| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submat1n.a |  | 
						
							| 2 |  | submat1n.b |  | 
						
							| 3 |  | fzdif2 |  | 
						
							| 4 |  | nnuz |  | 
						
							| 5 | 3 4 | eleq2s |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | elfz1end |  | 
						
							| 10 | 9 | biimpi |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 | 11 9 | sylibr |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 13 10 | syl |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 1 15 2 | matbas2i |  | 
						
							| 17 | 16 | ad2antlr |  | 
						
							| 18 |  | simprl |  | 
						
							| 19 |  | nnz |  | 
						
							| 20 |  | fzoval |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 | 21 5 | eqtr4d |  | 
						
							| 23 | 13 22 | syl |  | 
						
							| 24 | 18 23 | eleqtrrd |  | 
						
							| 25 |  | simprr |  | 
						
							| 26 | 25 23 | eleqtrrd |  | 
						
							| 27 | 8 13 13 14 14 17 24 26 | smattl |  | 
						
							| 28 | 27 | eqcomd |  | 
						
							| 29 | 6 7 28 | mpoeq123dva |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 1 31 2 | submaval |  | 
						
							| 33 | 30 11 11 32 | syl3anc |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 1 2 34 8 12 11 11 30 | smatcl |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 | 36 34 | matmpo |  | 
						
							| 38 | 35 37 | syl |  | 
						
							| 39 | 29 33 38 | 3eqtr4rd |  |