Metamath Proof Explorer


Theorem submat1n

Description: One case where the submatrix with integer indices, subMat1 , and the general submatrix subMat , agree. (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypotheses submat1n.a A=1NMatR
submat1n.b B=BaseA
Assertion submat1n NMBNsubMat1MN=N1NsubMatRMN

Proof

Step Hyp Ref Expression
1 submat1n.a A=1NMatR
2 submat1n.b B=BaseA
3 fzdif2 N11NN=1N1
4 nnuz =1
5 3 4 eleq2s N1NN=1N1
6 5 adantr NMB1NN=1N1
7 6 adantr NMBi1NN1NN=1N1
8 eqid NsubMat1MN=NsubMat1MN
9 elfz1end NN1N
10 9 biimpi NN1N
11 10 adantr NMBN1N
12 11 9 sylibr NMBN
13 12 adantr NMBi1NNj1NNN
14 13 10 syl NMBi1NNj1NNN1N
15 eqid BaseR=BaseR
16 1 15 2 matbas2i MBMBaseR1N×1N
17 16 ad2antlr NMBi1NNj1NNMBaseR1N×1N
18 simprl NMBi1NNj1NNi1NN
19 nnz NN
20 fzoval N1..^N=1N1
21 19 20 syl N1..^N=1N1
22 21 5 eqtr4d N1..^N=1NN
23 13 22 syl NMBi1NNj1NN1..^N=1NN
24 18 23 eleqtrrd NMBi1NNj1NNi1..^N
25 simprr NMBi1NNj1NNj1NN
26 25 23 eleqtrrd NMBi1NNj1NNj1..^N
27 8 13 13 14 14 17 24 26 smattl NMBi1NNj1NNiNsubMat1MNj=iMj
28 27 eqcomd NMBi1NNj1NNiMj=iNsubMat1MNj
29 6 7 28 mpoeq123dva NMBi1NN,j1NNiMj=i1N1,j1N1iNsubMat1MNj
30 simpr NMBMB
31 eqid 1NsubMatR=1NsubMatR
32 1 31 2 submaval MBN1NN1NN1NsubMatRMN=i1NN,j1NNiMj
33 30 11 11 32 syl3anc NMBN1NsubMatRMN=i1NN,j1NNiMj
34 eqid Base1N1MatR=Base1N1MatR
35 1 2 34 8 12 11 11 30 smatcl NMBNsubMat1MNBase1N1MatR
36 eqid 1N1MatR=1N1MatR
37 36 34 matmpo NsubMat1MNBase1N1MatRNsubMat1MN=i1N1,j1N1iNsubMat1MNj
38 35 37 syl NMBNsubMat1MN=i1N1,j1N1iNsubMat1MNj
39 29 33 38 3eqtr4rd NMBNsubMat1MN=N1NsubMatRMN