| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submat1n.a |
|
| 2 |
|
submat1n.b |
|
| 3 |
|
fzdif2 |
|
| 4 |
|
nnuz |
|
| 5 |
3 4
|
eleq2s |
|
| 6 |
5
|
adantr |
|
| 7 |
6
|
adantr |
|
| 8 |
|
eqid |
|
| 9 |
|
elfz1end |
|
| 10 |
9
|
biimpi |
|
| 11 |
10
|
adantr |
|
| 12 |
11 9
|
sylibr |
|
| 13 |
12
|
adantr |
|
| 14 |
13 10
|
syl |
|
| 15 |
|
eqid |
|
| 16 |
1 15 2
|
matbas2i |
|
| 17 |
16
|
ad2antlr |
|
| 18 |
|
simprl |
|
| 19 |
|
nnz |
|
| 20 |
|
fzoval |
|
| 21 |
19 20
|
syl |
|
| 22 |
21 5
|
eqtr4d |
|
| 23 |
13 22
|
syl |
|
| 24 |
18 23
|
eleqtrrd |
|
| 25 |
|
simprr |
|
| 26 |
25 23
|
eleqtrrd |
|
| 27 |
8 13 13 14 14 17 24 26
|
smattl |
|
| 28 |
27
|
eqcomd |
|
| 29 |
6 7 28
|
mpoeq123dva |
|
| 30 |
|
simpr |
|
| 31 |
|
eqid |
|
| 32 |
1 31 2
|
submaval |
|
| 33 |
30 11 11 32
|
syl3anc |
|
| 34 |
|
eqid |
|
| 35 |
1 2 34 8 12 11 11 30
|
smatcl |
|
| 36 |
|
eqid |
|
| 37 |
36 34
|
matmpo |
|
| 38 |
35 37
|
syl |
|
| 39 |
29 33 38
|
3eqtr4rd |
|