Metamath Proof Explorer


Theorem submodaddmod

Description: Subtraction and addition modulo a positive integer. (Contributed by AV, 7-Sep-2025)

Ref Expression
Assertion submodaddmod N A B C A + B mod N = A C mod N A + B + C mod N = A mod N

Proof

Step Hyp Ref Expression
1 zcn A A
2 1 3ad2ant1 A B C A
3 2 adantl N A B C A
4 zcn B B
5 4 3ad2ant2 A B C B
6 5 adantl N A B C B
7 zcn C C
8 7 3ad2ant3 A B C C
9 8 adantl N A B C C
10 3 6 9 pnncand N A B C A + B - A C = B + C
11 zaddcl B C B + C
12 11 zcnd B C B + C
13 12 3adant1 A B C B + C
14 13 adantl N A B C B + C
15 3 14 pncan2d N A B C A + B + C - A = B + C
16 10 15 eqtr4d N A B C A + B - A C = A + B + C - A
17 16 breq2d N A B C N A + B - A C N A + B + C - A
18 simpl N A B C N
19 zaddcl A B A + B
20 19 3adant3 A B C A + B
21 20 adantl N A B C A + B
22 zsubcl A C A C
23 22 3adant2 A B C A C
24 23 adantl N A B C A C
25 moddvds N A + B A C A + B mod N = A C mod N N A + B - A C
26 18 21 24 25 syl3anc N A B C A + B mod N = A C mod N N A + B - A C
27 simp1 A B C A
28 simp2 A B C B
29 simp3 A B C C
30 28 29 zaddcld A B C B + C
31 27 30 zaddcld A B C A + B + C
32 31 adantl N A B C A + B + C
33 simpr1 N A B C A
34 moddvds N A + B + C A A + B + C mod N = A mod N N A + B + C - A
35 18 32 33 34 syl3anc N A B C A + B + C mod N = A mod N N A + B + C - A
36 17 26 35 3bitr4d N A B C A + B mod N = A C mod N A + B + C mod N = A mod N