Metamath Proof Explorer


Theorem subofld

Description: Every subfield of an ordered field is also an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018)

Ref Expression
Assertion subofld F oField F 𝑠 A Field F 𝑠 A oField

Proof

Step Hyp Ref Expression
1 simpr F oField F 𝑠 A Field F 𝑠 A Field
2 isofld F oField F Field F oRing
3 2 simprbi F oField F oRing
4 3 adantr F oField F 𝑠 A Field F oRing
5 isfld F 𝑠 A Field F 𝑠 A DivRing F 𝑠 A CRing
6 5 simprbi F 𝑠 A Field F 𝑠 A CRing
7 crngring F 𝑠 A CRing F 𝑠 A Ring
8 1 6 7 3syl F oField F 𝑠 A Field F 𝑠 A Ring
9 suborng F oRing F 𝑠 A Ring F 𝑠 A oRing
10 4 8 9 syl2anc F oField F 𝑠 A Field F 𝑠 A oRing
11 isofld F 𝑠 A oField F 𝑠 A Field F 𝑠 A oRing
12 1 10 11 sylanbrc F oField F 𝑠 A Field F 𝑠 A oField