Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014) (Revised by Mario Carneiro, 7-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | subrgint | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgsubg | |
|
2 | 1 | ssriv | |
3 | sstr | |
|
4 | 2 3 | mpan2 | |
5 | subgint | |
|
6 | 4 5 | sylan | |
7 | ssel2 | |
|
8 | 7 | adantlr | |
9 | eqid | |
|
10 | 9 | subrg1cl | |
11 | 8 10 | syl | |
12 | 11 | ralrimiva | |
13 | fvex | |
|
14 | 13 | elint2 | |
15 | 12 14 | sylibr | |
16 | 8 | adantlr | |
17 | simprl | |
|
18 | elinti | |
|
19 | 18 | imp | |
20 | 17 19 | sylan | |
21 | simprr | |
|
22 | elinti | |
|
23 | 22 | imp | |
24 | 21 23 | sylan | |
25 | eqid | |
|
26 | 25 | subrgmcl | |
27 | 16 20 24 26 | syl3anc | |
28 | 27 | ralrimiva | |
29 | ovex | |
|
30 | 29 | elint2 | |
31 | 28 30 | sylibr | |
32 | 31 | ralrimivva | |
33 | ssn0 | |
|
34 | n0 | |
|
35 | subrgrcl | |
|
36 | 35 | exlimiv | |
37 | 34 36 | sylbi | |
38 | eqid | |
|
39 | 38 9 25 | issubrg2 | |
40 | 33 37 39 | 3syl | |
41 | 6 15 32 40 | mpbir3and | |