Metamath Proof Explorer


Theorem subrgint

Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014) (Revised by Mario Carneiro, 7-Dec-2014)

Ref Expression
Assertion subrgint SSubRingRSSSubRingR

Proof

Step Hyp Ref Expression
1 subrgsubg rSubRingRrSubGrpR
2 1 ssriv SubRingRSubGrpR
3 sstr SSubRingRSubRingRSubGrpRSSubGrpR
4 2 3 mpan2 SSubRingRSSubGrpR
5 subgint SSubGrpRSSSubGrpR
6 4 5 sylan SSubRingRSSSubGrpR
7 ssel2 SSubRingRrSrSubRingR
8 7 adantlr SSubRingRSrSrSubRingR
9 eqid 1R=1R
10 9 subrg1cl rSubRingR1Rr
11 8 10 syl SSubRingRSrS1Rr
12 11 ralrimiva SSubRingRSrS1Rr
13 fvex 1RV
14 13 elint2 1RSrS1Rr
15 12 14 sylibr SSubRingRS1RS
16 8 adantlr SSubRingRSxSySrSrSubRingR
17 simprl SSubRingRSxSySxS
18 elinti xSrSxr
19 18 imp xSrSxr
20 17 19 sylan SSubRingRSxSySrSxr
21 simprr SSubRingRSxSySyS
22 elinti ySrSyr
23 22 imp ySrSyr
24 21 23 sylan SSubRingRSxSySrSyr
25 eqid R=R
26 25 subrgmcl rSubRingRxryrxRyr
27 16 20 24 26 syl3anc SSubRingRSxSySrSxRyr
28 27 ralrimiva SSubRingRSxSySrSxRyr
29 ovex xRyV
30 29 elint2 xRySrSxRyr
31 28 30 sylibr SSubRingRSxSySxRyS
32 31 ralrimivva SSubRingRSxSySxRyS
33 ssn0 SSubRingRSSubRingR
34 n0 SubRingRrrSubRingR
35 subrgrcl rSubRingRRRing
36 35 exlimiv rrSubRingRRRing
37 34 36 sylbi SubRingRRRing
38 eqid BaseR=BaseR
39 38 9 25 issubrg2 RRingSSubRingRSSubGrpR1RSxSySxRyS
40 33 37 39 3syl SSubRingRSSSubRingRSSubGrpR1RSxSySxRyS
41 6 15 32 40 mpbir3and SSubRingRSSSubRingR