Metamath Proof Explorer


Theorem subsdrg

Description: A subring of a sub-division-ring is a sub-division-ring. See also subsubrg . (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses subsdrg.s S = R 𝑠 A
subsdrg.a φ A SubDRing R
Assertion subsdrg φ B SubDRing S B SubDRing R B A

Proof

Step Hyp Ref Expression
1 subsdrg.s S = R 𝑠 A
2 subsdrg.a φ A SubDRing R
3 eqid Base S = Base S
4 3 sdrgss B SubDRing S B Base S
5 4 adantl φ B SubDRing S B Base S
6 eqid Base R = Base R
7 6 sdrgss A SubDRing R A Base R
8 1 6 ressbas2 A Base R A = Base S
9 2 7 8 3syl φ A = Base S
10 9 adantr φ B SubDRing S A = Base S
11 5 10 sseqtrrd φ B SubDRing S B A
12 11 ex φ B SubDRing S B A
13 12 pm4.71d φ B SubDRing S B SubDRing S B A
14 1 sdrgdrng A SubDRing R S DivRing
15 2 14 syl φ S DivRing
16 sdrgrcl A SubDRing R R DivRing
17 2 16 syl φ R DivRing
18 15 17 2thd φ S DivRing R DivRing
19 18 adantr φ B A S DivRing R DivRing
20 sdrgsubrg A SubDRing R A SubRing R
21 1 subsubrg A SubRing R B SubRing S B SubRing R B A
22 2 20 21 3syl φ B SubRing S B SubRing R B A
23 22 rbaibd φ B A B SubRing S B SubRing R
24 1 oveq1i S 𝑠 B = R 𝑠 A 𝑠 B
25 ressabs A SubDRing R B A R 𝑠 A 𝑠 B = R 𝑠 B
26 2 25 sylan φ B A R 𝑠 A 𝑠 B = R 𝑠 B
27 24 26 eqtrid φ B A S 𝑠 B = R 𝑠 B
28 27 eleq1d φ B A S 𝑠 B DivRing R 𝑠 B DivRing
29 19 23 28 3anbi123d φ B A S DivRing B SubRing S S 𝑠 B DivRing R DivRing B SubRing R R 𝑠 B DivRing
30 issdrg B SubDRing S S DivRing B SubRing S S 𝑠 B DivRing
31 issdrg B SubDRing R R DivRing B SubRing R R 𝑠 B DivRing
32 29 30 31 3bitr4g φ B A B SubDRing S B SubDRing R
33 32 ex φ B A B SubDRing S B SubDRing R
34 33 pm5.32rd φ B SubDRing S B A B SubDRing R B A
35 13 34 bitrd φ B SubDRing S B SubDRing R B A