| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsubmgm.h |
|
| 2 |
|
eqid |
|
| 3 |
2
|
submgmss |
|
| 4 |
3
|
adantl |
|
| 5 |
1
|
submgmbas |
|
| 6 |
5
|
adantr |
|
| 7 |
4 6
|
sseqtrrd |
|
| 8 |
|
eqid |
|
| 9 |
8
|
submgmss |
|
| 10 |
9
|
adantr |
|
| 11 |
7 10
|
sstrd |
|
| 12 |
1
|
oveq1i |
|
| 13 |
|
ressabs |
|
| 14 |
12 13
|
eqtrid |
|
| 15 |
7 14
|
syldan |
|
| 16 |
|
eqid |
|
| 17 |
16
|
submgmmgm |
|
| 18 |
17
|
adantl |
|
| 19 |
15 18
|
eqeltrrd |
|
| 20 |
|
submgmrcl |
|
| 21 |
20
|
adantr |
|
| 22 |
|
eqid |
|
| 23 |
8 22
|
issubmgm2 |
|
| 24 |
21 23
|
syl |
|
| 25 |
11 19 24
|
mpbir2and |
|
| 26 |
25 7
|
jca |
|
| 27 |
|
simprr |
|
| 28 |
5
|
adantr |
|
| 29 |
27 28
|
sseqtrd |
|
| 30 |
14
|
adantrl |
|
| 31 |
22
|
submgmmgm |
|
| 32 |
31
|
ad2antrl |
|
| 33 |
30 32
|
eqeltrd |
|
| 34 |
1
|
submgmmgm |
|
| 35 |
34
|
adantr |
|
| 36 |
2 16
|
issubmgm2 |
|
| 37 |
35 36
|
syl |
|
| 38 |
29 33 37
|
mpbir2and |
|
| 39 |
26 38
|
impbida |
|