Metamath Proof Explorer


Theorem supfil

Description: The supersets of a nonempty set which are also subsets of a given base set form a filter. (Contributed by Jeff Hankins, 12-Nov-2009) (Revised by Stefan O'Rear, 7-Aug-2015)

Ref Expression
Assertion supfil AVBABx𝒫A|BxFilA

Proof

Step Hyp Ref Expression
1 sseq2 x=yBxBy
2 1 elrab yx𝒫A|Bxy𝒫ABy
3 velpw y𝒫AyA
4 3 anbi1i y𝒫AByyABy
5 2 4 bitri yx𝒫A|BxyABy
6 5 a1i AVBAByx𝒫A|BxyABy
7 simp1 AVBABAV
8 simp2 AVBABBA
9 sseq2 y=AByBA
10 9 sbcieg AV[˙A/y]˙ByBA
11 7 10 syl AVBAB[˙A/y]˙ByBA
12 8 11 mpbird AVBAB[˙A/y]˙By
13 ss0 BB=
14 13 necon3ai B¬B
15 14 3ad2ant3 AVBAB¬B
16 0ex V
17 sseq2 y=ByB
18 16 17 sbcie [˙/y]˙ByB
19 15 18 sylnibr AVBAB¬[˙/y]˙By
20 sstr BwwzBz
21 20 expcom wzBwBz
22 vex wV
23 sseq2 y=wByBw
24 22 23 sbcie [˙w/y]˙ByBw
25 vex zV
26 sseq2 y=zByBz
27 25 26 sbcie [˙z/y]˙ByBz
28 21 24 27 3imtr4g wz[˙w/y]˙By[˙z/y]˙By
29 28 3ad2ant3 AVBABzAwz[˙w/y]˙By[˙z/y]˙By
30 ssin BzBwBzw
31 30 biimpi BzBwBzw
32 27 24 31 syl2anb [˙z/y]˙By[˙w/y]˙ByBzw
33 25 inex1 zwV
34 sseq2 y=zwByBzw
35 33 34 sbcie [˙zw/y]˙ByBzw
36 32 35 sylibr [˙z/y]˙By[˙w/y]˙By[˙zw/y]˙By
37 36 a1i AVBABzAwA[˙z/y]˙By[˙w/y]˙By[˙zw/y]˙By
38 6 7 12 19 29 37 isfild AVBABx𝒫A|BxFilA