Metamath Proof Explorer


Theorem supfirege

Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019)

Ref Expression
Hypotheses supfirege.1 φB
supfirege.2 φBFin
supfirege.3 φCB
supfirege.4 φS=supB<
Assertion supfirege φCS

Proof

Step Hyp Ref Expression
1 supfirege.1 φB
2 supfirege.2 φBFin
3 supfirege.3 φCB
4 supfirege.4 φS=supB<
5 ltso <Or
6 5 a1i φ<Or
7 6 1 2 3 4 supgtoreq φC<SC=S
8 1 3 sseldd φC
9 3 ne0d φB
10 fisupcl <OrBFinBBsupB<B
11 6 2 9 1 10 syl13anc φsupB<B
12 4 11 eqeltrd φSB
13 1 12 sseldd φS
14 8 13 leloed φCSC<SC=S
15 7 14 mpbird φCS