Description: A supremum is the least upper bound. See also supcl and supub . (Contributed by NM, 13-Oct-2004) (Revised by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supmo.1 | |
|
supcl.2 | |
||
Assertion | suplub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmo.1 | |
|
2 | supcl.2 | |
|
3 | simpr | |
|
4 | breq1 | |
|
5 | breq1 | |
|
6 | 5 | rexbidv | |
7 | 4 6 | imbi12d | |
8 | 7 | cbvralvw | |
9 | 3 8 | sylib | |
10 | 9 | a1i | |
11 | 10 | ss2rabi | |
12 | 1 | supval2 | |
13 | 1 2 | supeu | |
14 | riotacl2 | |
|
15 | 13 14 | syl | |
16 | 12 15 | eqeltrd | |
17 | 11 16 | sselid | |
18 | breq2 | |
|
19 | 18 | imbi1d | |
20 | 19 | ralbidv | |
21 | 20 | elrab | |
22 | 21 | simprbi | |
23 | 17 22 | syl | |
24 | breq1 | |
|
25 | breq1 | |
|
26 | 25 | rexbidv | |
27 | 24 26 | imbi12d | |
28 | 27 | rspccv | |
29 | 28 | impd | |
30 | 23 29 | syl | |