Metamath Proof Explorer


Theorem suppfnss

Description: The support of a function which has the same zero values (in its domain) as another function is a subset of the support of this other function. (Contributed by AV, 30-Apr-2019) (Proof shortened by AV, 6-Jun-2022)

Ref Expression
Assertion suppfnss FFnAGFnBABBVZWxAGx=ZFx=ZFsuppZGsuppZ

Proof

Step Hyp Ref Expression
1 simpr1 FFnAGFnBABBVZWAB
2 fndm FFnAdomF=A
3 2 ad2antrr FFnAGFnBABBVZWdomF=A
4 fndm GFnBdomG=B
5 4 ad2antlr FFnAGFnBABBVZWdomG=B
6 1 3 5 3sstr4d FFnAGFnBABBVZWdomFdomG
7 6 adantr FFnAGFnBABBVZWxAGx=ZFx=ZdomFdomG
8 2 eleq2d FFnAydomFyA
9 8 ad2antrr FFnAGFnBABBVZWydomFyA
10 fveqeq2 x=yGx=ZGy=Z
11 fveqeq2 x=yFx=ZFy=Z
12 10 11 imbi12d x=yGx=ZFx=ZGy=ZFy=Z
13 12 rspcv yAxAGx=ZFx=ZGy=ZFy=Z
14 9 13 syl6bi FFnAGFnBABBVZWydomFxAGx=ZFx=ZGy=ZFy=Z
15 14 com23 FFnAGFnBABBVZWxAGx=ZFx=ZydomFGy=ZFy=Z
16 15 imp31 FFnAGFnBABBVZWxAGx=ZFx=ZydomFGy=ZFy=Z
17 16 necon3d FFnAGFnBABBVZWxAGx=ZFx=ZydomFFyZGyZ
18 17 ex FFnAGFnBABBVZWxAGx=ZFx=ZydomFFyZGyZ
19 18 com23 FFnAGFnBABBVZWxAGx=ZFx=ZFyZydomFGyZ
20 19 3imp FFnAGFnBABBVZWxAGx=ZFx=ZFyZydomFGyZ
21 7 20 rabssrabd FFnAGFnBABBVZWxAGx=ZFx=ZydomF|FyZydomG|GyZ
22 fnfun FFnAFunF
23 22 ad2antrr FFnAGFnBABBVZWFunF
24 simpl FFnAGFnBFFnA
25 ssexg ABBVAV
26 25 3adant3 ABBVZWAV
27 fnex FFnAAVFV
28 24 26 27 syl2an FFnAGFnBABBVZWFV
29 simpr3 FFnAGFnBABBVZWZW
30 suppval1 FunFFVZWFsuppZ=ydomF|FyZ
31 23 28 29 30 syl3anc FFnAGFnBABBVZWFsuppZ=ydomF|FyZ
32 fnfun GFnBFunG
33 32 ad2antlr FFnAGFnBABBVZWFunG
34 simpr FFnAGFnBGFnB
35 simp2 ABBVZWBV
36 fnex GFnBBVGV
37 34 35 36 syl2an FFnAGFnBABBVZWGV
38 suppval1 FunGGVZWGsuppZ=ydomG|GyZ
39 33 37 29 38 syl3anc FFnAGFnBABBVZWGsuppZ=ydomG|GyZ
40 31 39 sseq12d FFnAGFnBABBVZWFsuppZGsuppZydomF|FyZydomG|GyZ
41 40 adantr FFnAGFnBABBVZWxAGx=ZFx=ZFsuppZGsuppZydomF|FyZydomG|GyZ
42 21 41 mpbird FFnAGFnBABBVZWxAGx=ZFx=ZFsuppZGsuppZ
43 42 ex FFnAGFnBABBVZWxAGx=ZFx=ZFsuppZGsuppZ