Description: The support of a function which has the same zero values (in its domain) as another function is a subset of the support of this other function. (Contributed by AV, 30-Apr-2019) (Proof shortened by AV, 6-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | suppfnss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 | |
|
2 | fndm | |
|
3 | 2 | ad2antrr | |
4 | fndm | |
|
5 | 4 | ad2antlr | |
6 | 1 3 5 | 3sstr4d | |
7 | 6 | adantr | |
8 | 2 | eleq2d | |
9 | 8 | ad2antrr | |
10 | fveqeq2 | |
|
11 | fveqeq2 | |
|
12 | 10 11 | imbi12d | |
13 | 12 | rspcv | |
14 | 9 13 | syl6bi | |
15 | 14 | com23 | |
16 | 15 | imp31 | |
17 | 16 | necon3d | |
18 | 17 | ex | |
19 | 18 | com23 | |
20 | 19 | 3imp | |
21 | 7 20 | rabssrabd | |
22 | fnfun | |
|
23 | 22 | ad2antrr | |
24 | simpl | |
|
25 | ssexg | |
|
26 | 25 | 3adant3 | |
27 | fnex | |
|
28 | 24 26 27 | syl2an | |
29 | simpr3 | |
|
30 | suppval1 | |
|
31 | 23 28 29 30 | syl3anc | |
32 | fnfun | |
|
33 | 32 | ad2antlr | |
34 | simpr | |
|
35 | simp2 | |
|
36 | fnex | |
|
37 | 34 35 36 | syl2an | |
38 | suppval1 | |
|
39 | 33 37 29 38 | syl3anc | |
40 | 31 39 | sseq12d | |
41 | 40 | adantr | |
42 | 21 41 | mpbird | |
43 | 42 | ex | |