| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr1 |  | 
						
							| 2 |  | fndm |  | 
						
							| 3 | 2 | ad2antrr |  | 
						
							| 4 |  | fndm |  | 
						
							| 5 | 4 | ad2antlr |  | 
						
							| 6 | 1 3 5 | 3sstr4d |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 | 2 | eleq2d |  | 
						
							| 9 | 8 | ad2antrr |  | 
						
							| 10 |  | fveqeq2 |  | 
						
							| 11 |  | fveqeq2 |  | 
						
							| 12 | 10 11 | imbi12d |  | 
						
							| 13 | 12 | rspcv |  | 
						
							| 14 | 9 13 | biimtrdi |  | 
						
							| 15 | 14 | com23 |  | 
						
							| 16 | 15 | imp31 |  | 
						
							| 17 | 16 | necon3d |  | 
						
							| 18 | 17 | ex |  | 
						
							| 19 | 18 | com23 |  | 
						
							| 20 | 19 | 3imp |  | 
						
							| 21 | 7 20 | rabssrabd |  | 
						
							| 22 |  | fnfun |  | 
						
							| 23 | 22 | ad2antrr |  | 
						
							| 24 |  | simpl |  | 
						
							| 25 |  | ssexg |  | 
						
							| 26 | 25 | 3adant3 |  | 
						
							| 27 |  | fnex |  | 
						
							| 28 | 24 26 27 | syl2an |  | 
						
							| 29 |  | simpr3 |  | 
						
							| 30 |  | suppval1 |  | 
						
							| 31 | 23 28 29 30 | syl3anc |  | 
						
							| 32 |  | fnfun |  | 
						
							| 33 | 32 | ad2antlr |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 |  | simp2 |  | 
						
							| 36 |  | fnex |  | 
						
							| 37 | 34 35 36 | syl2an |  | 
						
							| 38 |  | suppval1 |  | 
						
							| 39 | 33 37 29 38 | syl3anc |  | 
						
							| 40 | 31 39 | sseq12d |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 | 21 41 | mpbird |  | 
						
							| 43 | 42 | ex |  |