Description: Condition for the support of a function operation to be a subset of the support of the left function term. (Contributed by Thierry Arnoux, 21-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suppofssd.1 | |
|
suppofssd.2 | |
||
suppofssd.3 | |
||
suppofssd.4 | |
||
suppofss1d.5 | |
||
Assertion | suppofss1d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppofssd.1 | |
|
2 | suppofssd.2 | |
|
3 | suppofssd.3 | |
|
4 | suppofssd.4 | |
|
5 | suppofss1d.5 | |
|
6 | 3 | ffnd | |
7 | 4 | ffnd | |
8 | inidm | |
|
9 | eqidd | |
|
10 | eqidd | |
|
11 | 6 7 1 1 8 9 10 | ofval | |
12 | 11 | adantr | |
13 | simpr | |
|
14 | 13 | oveq1d | |
15 | 5 | ralrimiva | |
16 | 15 | adantr | |
17 | 4 | ffvelcdmda | |
18 | simpr | |
|
19 | 18 | oveq2d | |
20 | 19 | eqeq1d | |
21 | 17 20 | rspcdv | |
22 | 16 21 | mpd | |
23 | 22 | adantr | |
24 | 12 14 23 | 3eqtrd | |
25 | 24 | ex | |
26 | 25 | ralrimiva | |
27 | 6 7 1 1 8 | offn | |
28 | ssidd | |
|
29 | suppfnss | |
|
30 | 27 6 28 1 2 29 | syl23anc | |
31 | 26 30 | mpd | |