Metamath Proof Explorer


Theorem suppofss1d

Description: Condition for the support of a function operation to be a subset of the support of the left function term. (Contributed by Thierry Arnoux, 21-Jun-2019)

Ref Expression
Hypotheses suppofssd.1 φAV
suppofssd.2 φZB
suppofssd.3 φF:AB
suppofssd.4 φG:AB
suppofss1d.5 φxBZXx=Z
Assertion suppofss1d φFXfGsuppZFsuppZ

Proof

Step Hyp Ref Expression
1 suppofssd.1 φAV
2 suppofssd.2 φZB
3 suppofssd.3 φF:AB
4 suppofssd.4 φG:AB
5 suppofss1d.5 φxBZXx=Z
6 3 ffnd φFFnA
7 4 ffnd φGFnA
8 inidm AA=A
9 eqidd φyAFy=Fy
10 eqidd φyAGy=Gy
11 6 7 1 1 8 9 10 ofval φyAFXfGy=FyXGy
12 11 adantr φyAFy=ZFXfGy=FyXGy
13 simpr φyAFy=ZFy=Z
14 13 oveq1d φyAFy=ZFyXGy=ZXGy
15 5 ralrimiva φxBZXx=Z
16 15 adantr φyAxBZXx=Z
17 4 ffvelcdmda φyAGyB
18 simpr φyAx=Gyx=Gy
19 18 oveq2d φyAx=GyZXx=ZXGy
20 19 eqeq1d φyAx=GyZXx=ZZXGy=Z
21 17 20 rspcdv φyAxBZXx=ZZXGy=Z
22 16 21 mpd φyAZXGy=Z
23 22 adantr φyAFy=ZZXGy=Z
24 12 14 23 3eqtrd φyAFy=ZFXfGy=Z
25 24 ex φyAFy=ZFXfGy=Z
26 25 ralrimiva φyAFy=ZFXfGy=Z
27 6 7 1 1 8 offn φFXfGFnA
28 ssidd φAA
29 suppfnss FXfGFnAFFnAAAAVZByAFy=ZFXfGy=ZFXfGsuppZFsuppZ
30 27 6 28 1 2 29 syl23anc φyAFy=ZFXfGy=ZFXfGsuppZFsuppZ
31 26 30 mpd φFXfGsuppZFsuppZ