Metamath Proof Explorer


Theorem suppofss2d

Description: Condition for the support of a function operation to be a subset of the support of the right function term. (Contributed by Thierry Arnoux, 21-Jun-2019)

Ref Expression
Hypotheses suppofssd.1 φAV
suppofssd.2 φZB
suppofssd.3 φF:AB
suppofssd.4 φG:AB
suppofss2d.5 φxBxXZ=Z
Assertion suppofss2d φFXfGsuppZGsuppZ

Proof

Step Hyp Ref Expression
1 suppofssd.1 φAV
2 suppofssd.2 φZB
3 suppofssd.3 φF:AB
4 suppofssd.4 φG:AB
5 suppofss2d.5 φxBxXZ=Z
6 3 ffnd φFFnA
7 4 ffnd φGFnA
8 inidm AA=A
9 eqidd φyAFy=Fy
10 eqidd φyAGy=Gy
11 6 7 1 1 8 9 10 ofval φyAFXfGy=FyXGy
12 11 adantr φyAGy=ZFXfGy=FyXGy
13 simpr φyAGy=ZGy=Z
14 13 oveq2d φyAGy=ZFyXGy=FyXZ
15 5 ralrimiva φxBxXZ=Z
16 15 adantr φyAxBxXZ=Z
17 3 ffvelcdmda φyAFyB
18 simpr φyAx=Fyx=Fy
19 18 oveq1d φyAx=FyxXZ=FyXZ
20 19 eqeq1d φyAx=FyxXZ=ZFyXZ=Z
21 17 20 rspcdv φyAxBxXZ=ZFyXZ=Z
22 16 21 mpd φyAFyXZ=Z
23 22 adantr φyAGy=ZFyXZ=Z
24 12 14 23 3eqtrd φyAGy=ZFXfGy=Z
25 24 ex φyAGy=ZFXfGy=Z
26 25 ralrimiva φyAGy=ZFXfGy=Z
27 6 7 1 1 8 offn φFXfGFnA
28 ssidd φAA
29 suppfnss FXfGFnAGFnAAAAVZByAGy=ZFXfGy=ZFXfGsuppZGsuppZ
30 27 7 28 1 2 29 syl23anc φyAGy=ZFXfGy=ZFXfGsuppZGsuppZ
31 26 30 mpd φFXfGsuppZGsuppZ