Metamath Proof Explorer


Theorem suprfinzcl

Description: The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019)

Ref Expression
Assertion suprfinzcl A A A Fin sup A < A

Proof

Step Hyp Ref Expression
1 zssre
2 ltso < Or
3 soss < Or < Or
4 1 2 3 mp2 < Or
5 4 a1i A A A Fin < Or
6 simp3 A A A Fin A Fin
7 simp2 A A A Fin A
8 simp1 A A A Fin A
9 fisup2g < Or A Fin A A r A a A ¬ r < a a a < r b A a < b
10 5 6 7 8 9 syl13anc A A A Fin r A a A ¬ r < a a a < r b A a < b
11 id A A
12 11 1 sstrdi A A
13 12 3ad2ant1 A A A Fin A
14 ssrexv A r A a A ¬ r < a a a < r b A a < b r a A ¬ r < a a a < r b A a < b
15 13 14 syl A A A Fin r A a A ¬ r < a a a < r b A a < b r a A ¬ r < a a a < r b A a < b
16 ssel2 A a A a
17 16 zred A a A a
18 17 ex A a A a
19 18 3ad2ant1 A A A Fin a A a
20 19 adantr A A A Fin r a A a
21 20 imp A A A Fin r a A a
22 simplr A A A Fin r a A r
23 21 22 lenltd A A A Fin r a A a r ¬ r < a
24 23 bicomd A A A Fin r a A ¬ r < a a r
25 24 ralbidva A A A Fin r a A ¬ r < a a A a r
26 25 biimpd A A A Fin r a A ¬ r < a a A a r
27 26 adantrd A A A Fin r a A ¬ r < a a a < r b A a < b a A a r
28 27 reximdva A A A Fin r a A ¬ r < a a a < r b A a < b r a A a r
29 15 28 syld A A A Fin r A a A ¬ r < a a a < r b A a < b r a A a r
30 10 29 mpd A A A Fin r a A a r
31 suprzcl A A r a A a r sup A < A
32 30 31 syld3an3 A A A Fin sup A < A