Metamath Proof Explorer


Theorem supxrnemnf

Description: The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017)

Ref Expression
Assertion supxrnemnf A*A¬−∞AsupA*<−∞

Proof

Step Hyp Ref Expression
1 mnfxr −∞*
2 1 a1i A*A¬−∞A−∞*
3 supxrcl A*supA*<*
4 3 3ad2ant1 A*A¬−∞AsupA*<*
5 simp1 A*A¬−∞AA*
6 5 1 jctir A*A¬−∞AA*−∞*
7 simpl A*¬−∞AA*
8 7 sselda A*¬−∞AxAx*
9 simpr A*¬−∞AxAxA
10 simplr A*¬−∞AxA¬−∞A
11 nelneq xA¬−∞A¬x=−∞
12 9 10 11 syl2anc A*¬−∞AxA¬x=−∞
13 ngtmnft x*x=−∞¬−∞<x
14 13 biimprd x*¬−∞<xx=−∞
15 14 con1d x*¬x=−∞−∞<x
16 8 12 15 sylc A*¬−∞AxA−∞<x
17 16 reximdva0 A*¬−∞AAxA−∞<x
18 17 3impa A*¬−∞AAxA−∞<x
19 18 3com23 A*A¬−∞AxA−∞<x
20 supxrlub A*−∞*−∞<supA*<xA−∞<x
21 20 biimprd A*−∞*xA−∞<x−∞<supA*<
22 6 19 21 sylc A*A¬−∞A−∞<supA*<
23 xrltne −∞*supA*<*−∞<supA*<supA*<−∞
24 2 4 22 23 syl3anc A*A¬−∞AsupA*<−∞