Description: The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | supxrnemnf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr | |
|
2 | 1 | a1i | |
3 | supxrcl | |
|
4 | 3 | 3ad2ant1 | |
5 | simp1 | |
|
6 | 5 1 | jctir | |
7 | simpl | |
|
8 | 7 | sselda | |
9 | simpr | |
|
10 | simplr | |
|
11 | nelneq | |
|
12 | 9 10 11 | syl2anc | |
13 | ngtmnft | |
|
14 | 13 | biimprd | |
15 | 14 | con1d | |
16 | 8 12 15 | sylc | |
17 | 16 | reximdva0 | |
18 | 17 | 3impa | |
19 | 18 | 3com23 | |
20 | supxrlub | |
|
21 | 20 | biimprd | |
22 | 6 19 21 | sylc | |
23 | xrltne | |
|
24 | 2 4 22 23 | syl3anc | |