| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symggrplem.c |  | 
						
							| 2 |  | symggrplem.p |  | 
						
							| 3 |  | coass |  | 
						
							| 4 |  | oveq1 |  | 
						
							| 5 | 4 | eleq1d |  | 
						
							| 6 |  | oveq2 |  | 
						
							| 7 | 6 | eleq1d |  | 
						
							| 8 | 5 7 1 | vtocl2ga |  | 
						
							| 9 |  | oveq1 |  | 
						
							| 10 |  | coeq1 |  | 
						
							| 11 | 9 10 | eqeq12d |  | 
						
							| 12 |  | oveq2 |  | 
						
							| 13 |  | coeq2 |  | 
						
							| 14 | 12 13 | eqeq12d |  | 
						
							| 15 | 11 14 2 | vtocl2ga |  | 
						
							| 16 | 8 15 | stoic3 |  | 
						
							| 17 |  | coeq1 |  | 
						
							| 18 | 4 17 | eqeq12d |  | 
						
							| 19 |  | coeq2 |  | 
						
							| 20 | 6 19 | eqeq12d |  | 
						
							| 21 | 18 20 2 | vtocl2ga |  | 
						
							| 22 | 21 | 3adant3 |  | 
						
							| 23 | 22 | coeq1d |  | 
						
							| 24 | 16 23 | eqtrd |  | 
						
							| 25 |  | simp1 |  | 
						
							| 26 |  | oveq1 |  | 
						
							| 27 | 26 | eleq1d |  | 
						
							| 28 |  | oveq2 |  | 
						
							| 29 | 28 | eleq1d |  | 
						
							| 30 | 27 29 1 | vtocl2ga |  | 
						
							| 31 | 30 | 3adant1 |  | 
						
							| 32 |  | oveq2 |  | 
						
							| 33 |  | coeq2 |  | 
						
							| 34 | 32 33 | eqeq12d |  | 
						
							| 35 | 18 34 2 | vtocl2ga |  | 
						
							| 36 | 25 31 35 | syl2anc |  | 
						
							| 37 |  | coeq1 |  | 
						
							| 38 | 26 37 | eqeq12d |  | 
						
							| 39 |  | coeq2 |  | 
						
							| 40 | 28 39 | eqeq12d |  | 
						
							| 41 | 38 40 2 | vtocl2ga |  | 
						
							| 42 | 41 | 3adant1 |  | 
						
							| 43 | 42 | coeq2d |  | 
						
							| 44 | 36 43 | eqtrd |  | 
						
							| 45 | 3 24 44 | 3eqtr4a |  |