Metamath Proof Explorer


Theorem symginv

Description: The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses symggrp.1 G=SymGrpA
symginv.2 B=BaseG
symginv.3 N=invgG
Assertion symginv FBNF=F-1

Proof

Step Hyp Ref Expression
1 symggrp.1 G=SymGrpA
2 symginv.2 B=BaseG
3 symginv.3 N=invgG
4 1 2 elsymgbas2 FBFBF:A1-1 ontoA
5 4 ibi FBF:A1-1 ontoA
6 f1ocnv F:A1-1 ontoAF-1:A1-1 ontoA
7 5 6 syl FBF-1:A1-1 ontoA
8 cnvexg FBF-1V
9 1 2 elsymgbas2 F-1VF-1BF-1:A1-1 ontoA
10 8 9 syl FBF-1BF-1:A1-1 ontoA
11 7 10 mpbird FBF-1B
12 eqid +G=+G
13 1 2 12 symgov FBF-1BF+GF-1=FF-1
14 11 13 mpdan FBF+GF-1=FF-1
15 f1ococnv2 F:A1-1 ontoAFF-1=IA
16 5 15 syl FBFF-1=IA
17 1 2 elbasfv FBAV
18 1 symgid AVIA=0G
19 17 18 syl FBIA=0G
20 14 16 19 3eqtrd FBF+GF-1=0G
21 1 symggrp AVGGrp
22 17 21 syl FBGGrp
23 id FBFB
24 eqid 0G=0G
25 2 12 24 3 grpinvid1 GGrpFBF-1BNF=F-1F+GF-1=0G
26 22 23 11 25 syl3anc FBNF=F-1F+GF-1=0G
27 20 26 mpbird FBNF=F-1