Description: The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by Mario Carneiro, 2-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symggrp.1 | |
|
symginv.2 | |
||
symginv.3 | |
||
Assertion | symginv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symggrp.1 | |
|
2 | symginv.2 | |
|
3 | symginv.3 | |
|
4 | 1 2 | elsymgbas2 | |
5 | 4 | ibi | |
6 | f1ocnv | |
|
7 | 5 6 | syl | |
8 | cnvexg | |
|
9 | 1 2 | elsymgbas2 | |
10 | 8 9 | syl | |
11 | 7 10 | mpbird | |
12 | eqid | |
|
13 | 1 2 12 | symgov | |
14 | 11 13 | mpdan | |
15 | f1ococnv2 | |
|
16 | 5 15 | syl | |
17 | 1 2 | elbasfv | |
18 | 1 | symgid | |
19 | 17 18 | syl | |
20 | 14 16 19 | 3eqtrd | |
21 | 1 | symggrp | |
22 | 17 21 | syl | |
23 | id | |
|
24 | eqid | |
|
25 | 2 12 24 3 | grpinvid1 | |
26 | 22 23 11 25 | syl3anc | |
27 | 20 26 | mpbird | |