Description: Lemma for symgmatr01 . (Contributed by AV, 3-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | symgmatr01.p | |
|
Assertion | symgmatr01lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgmatr01.p | |
|
2 | simpll | |
|
3 | eqeq1 | |
|
4 | fveq2 | |
|
5 | 4 | eqeq1d | |
6 | 5 | ifbid | |
7 | id | |
|
8 | 7 4 | oveq12d | |
9 | 3 6 8 | ifbieq12d | |
10 | 9 | eqeq1d | |
11 | 10 | adantl | |
12 | eqidd | |
|
13 | 12 | iftrued | |
14 | eldif | |
|
15 | ianor | |
|
16 | fveq1 | |
|
17 | 16 | eqeq1d | |
18 | 17 | elrab | |
19 | 15 18 | xchnxbir | |
20 | pm2.21 | |
|
21 | ax-1 | |
|
22 | 20 21 | jaoi | |
23 | 19 22 | sylbi | |
24 | 23 | impcom | |
25 | 14 24 | sylbi | |
26 | 25 | adantl | |
27 | 26 | iffalsed | |
28 | 13 27 | eqtrd | |
29 | 2 11 28 | rspcedvd | |
30 | 29 | ex | |