Metamath Proof Explorer


Theorem symgmatr01lem

Description: Lemma for symgmatr01 . (Contributed by AV, 3-Jan-2019)

Ref Expression
Hypothesis symgmatr01.p P=BaseSymGrpN
Assertion symgmatr01lem KNLNQPqP|qK=LkNifk=KifQk=LABkMQk=B

Proof

Step Hyp Ref Expression
1 symgmatr01.p P=BaseSymGrpN
2 simpll KNLNQPqP|qK=LKN
3 eqeq1 k=Kk=KK=K
4 fveq2 k=KQk=QK
5 4 eqeq1d k=KQk=LQK=L
6 5 ifbid k=KifQk=LAB=ifQK=LAB
7 id k=Kk=K
8 7 4 oveq12d k=KkMQk=KMQK
9 3 6 8 ifbieq12d k=Kifk=KifQk=LABkMQk=ifK=KifQK=LABKMQK
10 9 eqeq1d k=Kifk=KifQk=LABkMQk=BifK=KifQK=LABKMQK=B
11 10 adantl KNLNQPqP|qK=Lk=Kifk=KifQk=LABkMQk=BifK=KifQK=LABKMQK=B
12 eqidd KNLNQPqP|qK=LK=K
13 12 iftrued KNLNQPqP|qK=LifK=KifQK=LABKMQK=ifQK=LAB
14 eldif QPqP|qK=LQP¬QqP|qK=L
15 ianor ¬QPQK=L¬QP¬QK=L
16 fveq1 q=QqK=QK
17 16 eqeq1d q=QqK=LQK=L
18 17 elrab QqP|qK=LQPQK=L
19 15 18 xchnxbir ¬QqP|qK=L¬QP¬QK=L
20 pm2.21 ¬QPQP¬QK=L
21 ax-1 ¬QK=LQP¬QK=L
22 20 21 jaoi ¬QP¬QK=LQP¬QK=L
23 19 22 sylbi ¬QqP|qK=LQP¬QK=L
24 23 impcom QP¬QqP|qK=L¬QK=L
25 14 24 sylbi QPqP|qK=L¬QK=L
26 25 adantl KNLNQPqP|qK=L¬QK=L
27 26 iffalsed KNLNQPqP|qK=LifQK=LAB=B
28 13 27 eqtrd KNLNQPqP|qK=LifK=KifQK=LABKMQK=B
29 2 11 28 rspcedvd KNLNQPqP|qK=LkNifk=KifQk=LABkMQk=B
30 29 ex KNLNQPqP|qK=LkNifk=KifQk=LABkMQk=B