Metamath Proof Explorer


Theorem taylth

Description: Taylor's theorem. The Taylor polynomial of a N -times differentiable function is such that the error term goes to zero faster than ( x - B ) ^ N . This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Hypotheses taylth.f φF:A
taylth.a φA
taylth.d φdomDnFN=A
taylth.n φN
taylth.b φBA
taylth.t T=NTaylFB
taylth.r R=xABFxTxxBN
Assertion taylth φ0RlimB

Proof

Step Hyp Ref Expression
1 taylth.f φF:A
2 taylth.a φA
3 taylth.d φdomDnFN=A
4 taylth.n φN
5 taylth.b φBA
6 taylth.t T=NTaylFB
7 taylth.r R=xABFxTxxBN
8 reelprrecn
9 8 a1i φ
10 ax-resscn
11 fss F:AF:A
12 1 10 11 sylancl φF:A
13 1 adantr φm1..^N0yABDnFNmyDnTNmyyBmlimBF:A
14 2 adantr φm1..^N0yABDnFNmyDnTNmyyBmlimBA
15 3 adantr φm1..^N0yABDnFNmyDnTNmyyBmlimBdomDnFN=A
16 4 adantr φm1..^N0yABDnFNmyDnTNmyyBmlimBN
17 5 adantr φm1..^N0yABDnFNmyDnTNmyyBmlimBBA
18 simprl φm1..^N0yABDnFNmyDnTNmyyBmlimBm1..^N
19 simprr φm1..^N0yABDnFNmyDnTNmyyBmlimB0yABDnFNmyDnTNmyyBmlimB
20 fveq2 y=xDnFNmy=DnFNmx
21 fveq2 y=xDnTNmy=DnTNmx
22 20 21 oveq12d y=xDnFNmyDnTNmy=DnFNmxDnTNmx
23 oveq1 y=xyB=xB
24 23 oveq1d y=xyBm=xBm
25 22 24 oveq12d y=xDnFNmyDnTNmyyBm=DnFNmxDnTNmxxBm
26 25 cbvmptv yABDnFNmyDnTNmyyBm=xABDnFNmxDnTNmxxBm
27 26 oveq1i yABDnFNmyDnTNmyyBmlimB=xABDnFNmxDnTNmxxBmlimB
28 19 27 eleqtrdi φm1..^N0yABDnFNmyDnTNmyyBmlimB0xABDnFNmxDnTNmxxBmlimB
29 13 14 15 16 17 6 18 28 taylthlem2 φm1..^N0yABDnFNmyDnTNmyyBmlimB0xABDnFNm+1xDnTNm+1xxBm+1limB
30 9 12 2 3 4 5 6 7 29 taylthlem1 φ0RlimB