Description: Taylor's theorem. The Taylor polynomial of a N -times differentiable function is such that the error term goes to zero faster than ( x - B ) ^ N . This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | taylth.f | |
|
taylth.a | |
||
taylth.d | |
||
taylth.n | |
||
taylth.b | |
||
taylth.t | |
||
taylth.r | |
||
Assertion | taylth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | taylth.f | |
|
2 | taylth.a | |
|
3 | taylth.d | |
|
4 | taylth.n | |
|
5 | taylth.b | |
|
6 | taylth.t | |
|
7 | taylth.r | |
|
8 | reelprrecn | |
|
9 | 8 | a1i | |
10 | ax-resscn | |
|
11 | fss | |
|
12 | 1 10 11 | sylancl | |
13 | 1 | adantr | |
14 | 2 | adantr | |
15 | 3 | adantr | |
16 | 4 | adantr | |
17 | 5 | adantr | |
18 | simprl | |
|
19 | simprr | |
|
20 | fveq2 | |
|
21 | fveq2 | |
|
22 | 20 21 | oveq12d | |
23 | oveq1 | |
|
24 | 23 | oveq1d | |
25 | 22 24 | oveq12d | |
26 | 25 | cbvmptv | |
27 | 26 | oveq1i | |
28 | 19 27 | eleqtrdi | |
29 | 13 14 15 16 17 6 18 28 | taylthlem2 | |
30 | 9 12 2 3 4 5 6 7 29 | taylthlem1 | |