Metamath Proof Explorer


Theorem tdeglem2

Description: Simplification of total degree for the univariate case. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Assertion tdeglem2 h01𝑜h=h01𝑜fldh

Proof

Step Hyp Ref Expression
1 elmapi h0h:0
2 1 feqmptd h0h=xhx
3 2 oveq2d h0fldh=fldxhx
4 cnring fldRing
5 ringmnd fldRingfldMnd
6 4 5 mp1i h0fldMnd
7 0ex V
8 7 a1i h0V
9 7 snid
10 ffvelcdm h:0h0
11 1 9 10 sylancl h0h0
12 11 nn0cnd h0h
13 cnfldbas =Basefld
14 fveq2 x=hx=h
15 13 14 gsumsn fldMndVhfldxhx=h
16 6 8 12 15 syl3anc h0fldxhx=h
17 3 16 eqtrd h0fldh=h
18 df1o2 1𝑜=
19 18 oveq2i 01𝑜=0
20 17 19 eleq2s h01𝑜fldh=h
21 20 eqcomd h01𝑜h=fldh
22 21 mpteq2ia h01𝑜h=h01𝑜fldh