Metamath Proof Explorer


Theorem tendoplcl

Description: Endomorphism sum is a trace-preserving endomorphism. (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses tendopl.h H=LHypK
tendopl.t T=LTrnKW
tendopl.e E=TEndoKW
tendopl.p P=sE,tEfTsftf
Assertion tendoplcl KHLWHUEVEUPVE

Proof

Step Hyp Ref Expression
1 tendopl.h H=LHypK
2 tendopl.t T=LTrnKW
3 tendopl.e E=TEndoKW
4 tendopl.p P=sE,tEfTsftf
5 eqid K=K
6 eqid trLKW=trLKW
7 simp1 KHLWHUEVEKHLWH
8 simpl1 KHLWHUEVEgTKHLWH
9 simpl2 KHLWHUEVEgTUE
10 simpr KHLWHUEVEgTgT
11 1 2 3 tendocl KHLWHUEgTUgT
12 8 9 10 11 syl3anc KHLWHUEVEgTUgT
13 simpl3 KHLWHUEVEgTVE
14 1 2 3 tendocl KHLWHVEgTVgT
15 8 13 10 14 syl3anc KHLWHUEVEgTVgT
16 1 2 ltrnco KHLWHUgTVgTUgVgT
17 8 12 15 16 syl3anc KHLWHUEVEgTUgVgT
18 17 fmpttd KHLWHUEVEgTUgVg:TT
19 4 2 tendopl UEVEUPV=gTUgVg
20 19 3adant1 KHLWHUEVEUPV=gTUgVg
21 20 feq1d KHLWHUEVEUPV:TTgTUgVg:TT
22 18 21 mpbird KHLWHUEVEUPV:TT
23 simp11 KHLWHUEVEhTiTKHLWH
24 simp12 KHLWHUEVEhTiTUE
25 simp13 KHLWHUEVEhTiTVE
26 3simpc KHLWHUEVEhTiThTiT
27 1 2 3 4 tendoplco2 KHLWHUEVEhTiTUPVhi=UPVhUPVi
28 23 24 25 26 27 syl121anc KHLWHUEVEhTiTUPVhi=UPVhUPVi
29 simpl1 KHLWHUEVEhTKHLWH
30 simpl2 KHLWHUEVEhTUE
31 simpl3 KHLWHUEVEhTVE
32 simpr KHLWHUEVEhThT
33 1 2 3 4 5 6 tendopltp KHLWHUEVEhTtrLKWUPVhKtrLKWh
34 29 30 31 32 33 syl121anc KHLWHUEVEhTtrLKWUPVhKtrLKWh
35 5 1 2 6 3 7 22 28 34 istendod KHLWHUEVEUPVE