Metamath Proof Explorer


Theorem tendoplcom

Description: The endomorphism sum operation is commutative. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypotheses tendopl.h H = LHyp K
tendopl.t T = LTrn K W
tendopl.e E = TEndo K W
tendopl.p P = s E , t E f T s f t f
Assertion tendoplcom K HL W H U E V E U P V = V P U

Proof

Step Hyp Ref Expression
1 tendopl.h H = LHyp K
2 tendopl.t T = LTrn K W
3 tendopl.e E = TEndo K W
4 tendopl.p P = s E , t E f T s f t f
5 simp1 K HL W H U E V E K HL W H
6 1 2 3 4 tendoplcl K HL W H U E V E U P V E
7 1 2 3 4 tendoplcl K HL W H V E U E V P U E
8 7 3com23 K HL W H U E V E V P U E
9 simpl1 K HL W H U E V E g T K HL W H
10 simpl2 K HL W H U E V E g T U E
11 simpr K HL W H U E V E g T g T
12 1 2 3 tendocl K HL W H U E g T U g T
13 9 10 11 12 syl3anc K HL W H U E V E g T U g T
14 simpl3 K HL W H U E V E g T V E
15 1 2 3 tendocl K HL W H V E g T V g T
16 9 14 11 15 syl3anc K HL W H U E V E g T V g T
17 1 2 ltrncom K HL W H U g T V g T U g V g = V g U g
18 9 13 16 17 syl3anc K HL W H U E V E g T U g V g = V g U g
19 4 2 tendopl2 U E V E g T U P V g = U g V g
20 10 14 11 19 syl3anc K HL W H U E V E g T U P V g = U g V g
21 4 2 tendopl2 V E U E g T V P U g = V g U g
22 14 10 11 21 syl3anc K HL W H U E V E g T V P U g = V g U g
23 18 20 22 3eqtr4d K HL W H U E V E g T U P V g = V P U g
24 23 ralrimiva K HL W H U E V E g T U P V g = V P U g
25 1 2 3 tendoeq1 K HL W H U P V E V P U E g T U P V g = V P U g U P V = V P U
26 5 6 8 24 25 syl121anc K HL W H U E V E U P V = V P U