Metamath Proof Explorer


Theorem tendoplcom

Description: The endomorphism sum operation is commutative. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypotheses tendopl.h H=LHypK
tendopl.t T=LTrnKW
tendopl.e E=TEndoKW
tendopl.p P=sE,tEfTsftf
Assertion tendoplcom KHLWHUEVEUPV=VPU

Proof

Step Hyp Ref Expression
1 tendopl.h H=LHypK
2 tendopl.t T=LTrnKW
3 tendopl.e E=TEndoKW
4 tendopl.p P=sE,tEfTsftf
5 simp1 KHLWHUEVEKHLWH
6 1 2 3 4 tendoplcl KHLWHUEVEUPVE
7 1 2 3 4 tendoplcl KHLWHVEUEVPUE
8 7 3com23 KHLWHUEVEVPUE
9 simpl1 KHLWHUEVEgTKHLWH
10 simpl2 KHLWHUEVEgTUE
11 simpr KHLWHUEVEgTgT
12 1 2 3 tendocl KHLWHUEgTUgT
13 9 10 11 12 syl3anc KHLWHUEVEgTUgT
14 simpl3 KHLWHUEVEgTVE
15 1 2 3 tendocl KHLWHVEgTVgT
16 9 14 11 15 syl3anc KHLWHUEVEgTVgT
17 1 2 ltrncom KHLWHUgTVgTUgVg=VgUg
18 9 13 16 17 syl3anc KHLWHUEVEgTUgVg=VgUg
19 4 2 tendopl2 UEVEgTUPVg=UgVg
20 10 14 11 19 syl3anc KHLWHUEVEgTUPVg=UgVg
21 4 2 tendopl2 VEUEgTVPUg=VgUg
22 14 10 11 21 syl3anc KHLWHUEVEgTVPUg=VgUg
23 18 20 22 3eqtr4d KHLWHUEVEgTUPVg=VPUg
24 23 ralrimiva KHLWHUEVEgTUPVg=VPUg
25 1 2 3 tendoeq1 KHLWHUPVEVPUEgTUPVg=VPUgUPV=VPU
26 5 6 8 24 25 syl121anc KHLWHUEVEUPV=VPU