Metamath Proof Explorer


Theorem tendoset

Description: The set of trace-preserving endomorphisms on the set of translations for a fiducial co-atom W . (Contributed by NM, 8-Jun-2013)

Ref Expression
Hypotheses tendoset.l ˙ = K
tendoset.h H = LHyp K
tendoset.t T = LTrn K W
tendoset.r R = trL K W
tendoset.e E = TEndo K W
Assertion tendoset K V W H E = s | s : T T f T g T s f g = s f s g f T R s f ˙ R f

Proof

Step Hyp Ref Expression
1 tendoset.l ˙ = K
2 tendoset.h H = LHyp K
3 tendoset.t T = LTrn K W
4 tendoset.r R = trL K W
5 tendoset.e E = TEndo K W
6 1 2 tendofset K V TEndo K = w H s | s : LTrn K w LTrn K w f LTrn K w g LTrn K w s f g = s f s g f LTrn K w trL K w s f ˙ trL K w f
7 6 fveq1d K V TEndo K W = w H s | s : LTrn K w LTrn K w f LTrn K w g LTrn K w s f g = s f s g f LTrn K w trL K w s f ˙ trL K w f W
8 fveq2 w = W LTrn K w = LTrn K W
9 8 8 feq23d w = W s : LTrn K w LTrn K w s : LTrn K W LTrn K W
10 8 raleqdv w = W g LTrn K w s f g = s f s g g LTrn K W s f g = s f s g
11 8 10 raleqbidv w = W f LTrn K w g LTrn K w s f g = s f s g f LTrn K W g LTrn K W s f g = s f s g
12 fveq2 w = W trL K w = trL K W
13 12 4 eqtr4di w = W trL K w = R
14 13 fveq1d w = W trL K w s f = R s f
15 13 fveq1d w = W trL K w f = R f
16 14 15 breq12d w = W trL K w s f ˙ trL K w f R s f ˙ R f
17 8 16 raleqbidv w = W f LTrn K w trL K w s f ˙ trL K w f f LTrn K W R s f ˙ R f
18 9 11 17 3anbi123d w = W s : LTrn K w LTrn K w f LTrn K w g LTrn K w s f g = s f s g f LTrn K w trL K w s f ˙ trL K w f s : LTrn K W LTrn K W f LTrn K W g LTrn K W s f g = s f s g f LTrn K W R s f ˙ R f
19 18 abbidv w = W s | s : LTrn K w LTrn K w f LTrn K w g LTrn K w s f g = s f s g f LTrn K w trL K w s f ˙ trL K w f = s | s : LTrn K W LTrn K W f LTrn K W g LTrn K W s f g = s f s g f LTrn K W R s f ˙ R f
20 eqid w H s | s : LTrn K w LTrn K w f LTrn K w g LTrn K w s f g = s f s g f LTrn K w trL K w s f ˙ trL K w f = w H s | s : LTrn K w LTrn K w f LTrn K w g LTrn K w s f g = s f s g f LTrn K w trL K w s f ˙ trL K w f
21 fvex LTrn K W V
22 21 21 mapval LTrn K W LTrn K W = s | s : LTrn K W LTrn K W
23 ovex LTrn K W LTrn K W V
24 22 23 eqeltrri s | s : LTrn K W LTrn K W V
25 simp1 s : LTrn K W LTrn K W f LTrn K W g LTrn K W s f g = s f s g f LTrn K W R s f ˙ R f s : LTrn K W LTrn K W
26 25 ss2abi s | s : LTrn K W LTrn K W f LTrn K W g LTrn K W s f g = s f s g f LTrn K W R s f ˙ R f s | s : LTrn K W LTrn K W
27 24 26 ssexi s | s : LTrn K W LTrn K W f LTrn K W g LTrn K W s f g = s f s g f LTrn K W R s f ˙ R f V
28 19 20 27 fvmpt W H w H s | s : LTrn K w LTrn K w f LTrn K w g LTrn K w s f g = s f s g f LTrn K w trL K w s f ˙ trL K w f W = s | s : LTrn K W LTrn K W f LTrn K W g LTrn K W s f g = s f s g f LTrn K W R s f ˙ R f
29 3 3 feq23i s : T T s : LTrn K W LTrn K W
30 3 raleqi g T s f g = s f s g g LTrn K W s f g = s f s g
31 3 30 raleqbii f T g T s f g = s f s g f LTrn K W g LTrn K W s f g = s f s g
32 3 raleqi f T R s f ˙ R f f LTrn K W R s f ˙ R f
33 29 31 32 3anbi123i s : T T f T g T s f g = s f s g f T R s f ˙ R f s : LTrn K W LTrn K W f LTrn K W g LTrn K W s f g = s f s g f LTrn K W R s f ˙ R f
34 33 abbii s | s : T T f T g T s f g = s f s g f T R s f ˙ R f = s | s : LTrn K W LTrn K W f LTrn K W g LTrn K W s f g = s f s g f LTrn K W R s f ˙ R f
35 28 34 eqtr4di W H w H s | s : LTrn K w LTrn K w f LTrn K w g LTrn K w s f g = s f s g f LTrn K w trL K w s f ˙ trL K w f W = s | s : T T f T g T s f g = s f s g f T R s f ˙ R f
36 7 35 sylan9eq K V W H TEndo K W = s | s : T T f T g T s f g = s f s g f T R s f ˙ R f
37 5 36 syl5eq K V W H E = s | s : T T f T g T s f g = s f s g f T R s f ˙ R f