Metamath Proof Explorer


Theorem tendotp

Description: Trace-preserving property of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses tendoset.l ˙=K
tendoset.h H=LHypK
tendoset.t T=LTrnKW
tendoset.r R=trLKW
tendoset.e E=TEndoKW
Assertion tendotp KVWHSEFTRSF˙RF

Proof

Step Hyp Ref Expression
1 tendoset.l ˙=K
2 tendoset.h H=LHypK
3 tendoset.t T=LTrnKW
4 tendoset.r R=trLKW
5 tendoset.e E=TEndoKW
6 1 2 3 4 5 istendo KVWHSES:TTfTgTSfg=SfSgfTRSf˙Rf
7 2fveq3 f=FRSf=RSF
8 fveq2 f=FRf=RF
9 7 8 breq12d f=FRSf˙RfRSF˙RF
10 9 rspccv fTRSf˙RfFTRSF˙RF
11 10 3ad2ant3 S:TTfTgTSfg=SfSgfTRSf˙RfFTRSF˙RF
12 6 11 syl6bi KVWHSEFTRSF˙RF
13 12 3imp KVWHSEFTRSF˙RF