Metamath Proof Explorer


Theorem tendotr

Description: The trace of the value of a nonzero trace-preserving endomorphism equals the trace of the argument. (Contributed by NM, 11-Aug-2013)

Ref Expression
Hypotheses tendotr.b B=BaseK
tendotr.h H=LHypK
tendotr.t T=LTrnKW
tendotr.r R=trLKW
tendotr.e E=TEndoKW
tendotr.o O=fTIB
Assertion tendotr KHLWHUEUOFTRUF=RF

Proof

Step Hyp Ref Expression
1 tendotr.b B=BaseK
2 tendotr.h H=LHypK
3 tendotr.t T=LTrnKW
4 tendotr.r R=trLKW
5 tendotr.e E=TEndoKW
6 tendotr.o O=fTIB
7 simpl1 KHLWHUEUOFTF=IBKHLWH
8 simpl2l KHLWHUEUOFTF=IBUE
9 1 2 5 tendoid KHLWHUEUIB=IB
10 7 8 9 syl2anc KHLWHUEUOFTF=IBUIB=IB
11 simpr KHLWHUEUOFTF=IBF=IB
12 11 fveq2d KHLWHUEUOFTF=IBUF=UIB
13 10 12 11 3eqtr4d KHLWHUEUOFTF=IBUF=F
14 13 fveq2d KHLWHUEUOFTF=IBRUF=RF
15 simpl1 KHLWHUEUOFTFIBKHLWH
16 simpl2l KHLWHUEUOFTFIBUE
17 simpl3 KHLWHUEUOFTFIBFT
18 eqid K=K
19 18 2 3 4 5 tendotp KHLWHUEFTRUFKRF
20 15 16 17 19 syl3anc KHLWHUEUOFTFIBRUFKRF
21 simpl1l KHLWHUEUOFTFIBKHL
22 hlatl KHLKAtLat
23 21 22 syl KHLWHUEUOFTFIBKAtLat
24 2 3 5 tendocl KHLWHUEFTUFT
25 15 16 17 24 syl3anc KHLWHUEUOFTFIBUFT
26 simpl2r KHLWHUEUOFTFIBUO
27 simpr KHLWHUEUOFTFIBFIB
28 1 2 3 5 6 tendoid0 KHLWHUEFTFIBUF=IBU=O
29 15 16 17 27 28 syl112anc KHLWHUEUOFTFIBUF=IBU=O
30 29 necon3bid KHLWHUEUOFTFIBUFIBUO
31 26 30 mpbird KHLWHUEUOFTFIBUFIB
32 eqid AtomsK=AtomsK
33 1 32 2 3 4 trlnidat KHLWHUFTUFIBRUFAtomsK
34 15 25 31 33 syl3anc KHLWHUEUOFTFIBRUFAtomsK
35 1 32 2 3 4 trlnidat KHLWHFTFIBRFAtomsK
36 15 17 27 35 syl3anc KHLWHUEUOFTFIBRFAtomsK
37 18 32 atcmp KAtLatRUFAtomsKRFAtomsKRUFKRFRUF=RF
38 23 34 36 37 syl3anc KHLWHUEUOFTFIBRUFKRFRUF=RF
39 20 38 mpbid KHLWHUEUOFTFIBRUF=RF
40 14 39 pm2.61dane KHLWHUEUOFTRUF=RF