Metamath Proof Explorer


Theorem tgjustc2

Description: A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023)

Ref Expression
Hypotheses tgjustc2.p P=BaseG
tgjustc2.d RErP×P
Assertion tgjustc2 ddFnP×PwPxPyPzPwxRyzwdx=ydz

Proof

Step Hyp Ref Expression
1 tgjustc2.p P=BaseG
2 tgjustc2.d RErP×P
3 1 fvexi PV
4 3 3 xpex P×PV
5 tgjustr P×PVRErP×PddFnP×PuP×PvP×PuRvdu=dv
6 4 2 5 mp2an ddFnP×PuP×PvP×PuRvdu=dv
7 simplrl uP×PvP×PuRvdu=dvwPxPyPzPwP
8 simplrr uP×PvP×PuRvdu=dvwPxPyPzPxP
9 7 8 opelxpd uP×PvP×PuRvdu=dvwPxPyPzPwxP×P
10 simprl uP×PvP×PuRvdu=dvwPxPyPzPyP
11 simprr uP×PvP×PuRvdu=dvwPxPyPzPzP
12 10 11 opelxpd uP×PvP×PuRvdu=dvwPxPyPzPyzP×P
13 simpll uP×PvP×PuRvdu=dvwPxPyPzPuP×PvP×PuRvdu=dv
14 breq1 u=wxuRvwxRv
15 fveq2 u=wxdu=dwx
16 df-ov wdx=dwx
17 15 16 eqtr4di u=wxdu=wdx
18 17 eqeq1d u=wxdu=dvwdx=dv
19 14 18 bibi12d u=wxuRvdu=dvwxRvwdx=dv
20 breq2 v=yzwxRvwxRyz
21 fveq2 v=yzdv=dyz
22 df-ov ydz=dyz
23 21 22 eqtr4di v=yzdv=ydz
24 23 eqeq2d v=yzwdx=dvwdx=ydz
25 20 24 bibi12d v=yzwxRvwdx=dvwxRyzwdx=ydz
26 19 25 rspc2va wxP×PyzP×PuP×PvP×PuRvdu=dvwxRyzwdx=ydz
27 9 12 13 26 syl21anc uP×PvP×PuRvdu=dvwPxPyPzPwxRyzwdx=ydz
28 27 ralrimivva uP×PvP×PuRvdu=dvwPxPyPzPwxRyzwdx=ydz
29 28 ralrimivva uP×PvP×PuRvdu=dvwPxPyPzPwxRyzwdx=ydz
30 29 anim2i dFnP×PuP×PvP×PuRvdu=dvdFnP×PwPxPyPzPwxRyzwdx=ydz
31 6 30 eximii ddFnP×PwPxPyPzPwxRyzwdx=ydz