Metamath Proof Explorer


Theorem tmsxps

Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsxps.p P=disttoMetSpM×𝑠toMetSpN
tmsxps.1 φM∞MetX
tmsxps.2 φN∞MetY
Assertion tmsxps φP∞MetX×Y

Proof

Step Hyp Ref Expression
1 tmsxps.p P=disttoMetSpM×𝑠toMetSpN
2 tmsxps.1 φM∞MetX
3 tmsxps.2 φN∞MetY
4 eqid toMetSpM×𝑠toMetSpN=toMetSpM×𝑠toMetSpN
5 eqid BasetoMetSpM=BasetoMetSpM
6 eqid BasetoMetSpN=BasetoMetSpN
7 eqid toMetSpM=toMetSpM
8 7 tmsxms M∞MetXtoMetSpM∞MetSp
9 2 8 syl φtoMetSpM∞MetSp
10 eqid toMetSpN=toMetSpN
11 10 tmsxms N∞MetYtoMetSpN∞MetSp
12 3 11 syl φtoMetSpN∞MetSp
13 4 5 6 9 12 1 xpsdsfn2 φPFnBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpN
14 fnresdm PFnBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpNPBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpN=P
15 13 14 syl φPBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpN=P
16 4 xpsxms toMetSpM∞MetSptoMetSpN∞MetSptoMetSpM×𝑠toMetSpN∞MetSp
17 9 12 16 syl2anc φtoMetSpM×𝑠toMetSpN∞MetSp
18 eqid BasetoMetSpM×𝑠toMetSpN=BasetoMetSpM×𝑠toMetSpN
19 18 1 xmsxmet2 toMetSpM×𝑠toMetSpN∞MetSpPBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpN∞MetBasetoMetSpM×𝑠toMetSpN
20 17 19 syl φPBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpN∞MetBasetoMetSpM×𝑠toMetSpN
21 15 20 eqeltrrd φP∞MetBasetoMetSpM×𝑠toMetSpN
22 7 tmsbas M∞MetXX=BasetoMetSpM
23 2 22 syl φX=BasetoMetSpM
24 10 tmsbas N∞MetYY=BasetoMetSpN
25 3 24 syl φY=BasetoMetSpN
26 23 25 xpeq12d φX×Y=BasetoMetSpM×BasetoMetSpN
27 4 5 6 9 12 xpsbas φBasetoMetSpM×BasetoMetSpN=BasetoMetSpM×𝑠toMetSpN
28 26 27 eqtrd φX×Y=BasetoMetSpM×𝑠toMetSpN
29 28 fveq2d φ∞MetX×Y=∞MetBasetoMetSpM×𝑠toMetSpN
30 21 29 eleqtrrd φP∞MetX×Y