Metamath Proof Explorer


Theorem tmsxpsmopn

Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsxps.p P = dist toMetSp M × 𝑠 toMetSp N
tmsxps.1 φ M ∞Met X
tmsxps.2 φ N ∞Met Y
tmsxpsmopn.j J = MetOpen M
tmsxpsmopn.k K = MetOpen N
tmsxpsmopn.l L = MetOpen P
Assertion tmsxpsmopn φ L = J × t K

Proof

Step Hyp Ref Expression
1 tmsxps.p P = dist toMetSp M × 𝑠 toMetSp N
2 tmsxps.1 φ M ∞Met X
3 tmsxps.2 φ N ∞Met Y
4 tmsxpsmopn.j J = MetOpen M
5 tmsxpsmopn.k K = MetOpen N
6 tmsxpsmopn.l L = MetOpen P
7 eqid toMetSp M = toMetSp M
8 7 tmsxms M ∞Met X toMetSp M ∞MetSp
9 2 8 syl φ toMetSp M ∞MetSp
10 xmstps toMetSp M ∞MetSp toMetSp M TopSp
11 9 10 syl φ toMetSp M TopSp
12 eqid toMetSp N = toMetSp N
13 12 tmsxms N ∞Met Y toMetSp N ∞MetSp
14 3 13 syl φ toMetSp N ∞MetSp
15 xmstps toMetSp N ∞MetSp toMetSp N TopSp
16 14 15 syl φ toMetSp N TopSp
17 eqid toMetSp M × 𝑠 toMetSp N = toMetSp M × 𝑠 toMetSp N
18 eqid TopOpen toMetSp M = TopOpen toMetSp M
19 eqid TopOpen toMetSp N = TopOpen toMetSp N
20 eqid TopOpen toMetSp M × 𝑠 toMetSp N = TopOpen toMetSp M × 𝑠 toMetSp N
21 17 18 19 20 xpstopn toMetSp M TopSp toMetSp N TopSp TopOpen toMetSp M × 𝑠 toMetSp N = TopOpen toMetSp M × t TopOpen toMetSp N
22 11 16 21 syl2anc φ TopOpen toMetSp M × 𝑠 toMetSp N = TopOpen toMetSp M × t TopOpen toMetSp N
23 17 xpsxms toMetSp M ∞MetSp toMetSp N ∞MetSp toMetSp M × 𝑠 toMetSp N ∞MetSp
24 9 14 23 syl2anc φ toMetSp M × 𝑠 toMetSp N ∞MetSp
25 eqid Base toMetSp M × 𝑠 toMetSp N = Base toMetSp M × 𝑠 toMetSp N
26 1 reseq1i P Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N = dist toMetSp M × 𝑠 toMetSp N Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N
27 20 25 26 xmstopn toMetSp M × 𝑠 toMetSp N ∞MetSp TopOpen toMetSp M × 𝑠 toMetSp N = MetOpen P Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N
28 24 27 syl φ TopOpen toMetSp M × 𝑠 toMetSp N = MetOpen P Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N
29 eqid Base toMetSp M = Base toMetSp M
30 eqid Base toMetSp N = Base toMetSp N
31 17 29 30 9 14 1 xpsdsfn2 φ P Fn Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N
32 fnresdm P Fn Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N P Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N = P
33 31 32 syl φ P Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N = P
34 33 fveq2d φ MetOpen P Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N = MetOpen P
35 28 34 eqtr2d φ MetOpen P = TopOpen toMetSp M × 𝑠 toMetSp N
36 6 35 syl5eq φ L = TopOpen toMetSp M × 𝑠 toMetSp N
37 7 4 tmstopn M ∞Met X J = TopOpen toMetSp M
38 2 37 syl φ J = TopOpen toMetSp M
39 12 5 tmstopn N ∞Met Y K = TopOpen toMetSp N
40 3 39 syl φ K = TopOpen toMetSp N
41 38 40 oveq12d φ J × t K = TopOpen toMetSp M × t TopOpen toMetSp N
42 22 36 41 3eqtr4d φ L = J × t K