Metamath Proof Explorer


Theorem tmsxpsmopn

Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsxps.p P=disttoMetSpM×𝑠toMetSpN
tmsxps.1 φM∞MetX
tmsxps.2 φN∞MetY
tmsxpsmopn.j J=MetOpenM
tmsxpsmopn.k K=MetOpenN
tmsxpsmopn.l L=MetOpenP
Assertion tmsxpsmopn φL=J×tK

Proof

Step Hyp Ref Expression
1 tmsxps.p P=disttoMetSpM×𝑠toMetSpN
2 tmsxps.1 φM∞MetX
3 tmsxps.2 φN∞MetY
4 tmsxpsmopn.j J=MetOpenM
5 tmsxpsmopn.k K=MetOpenN
6 tmsxpsmopn.l L=MetOpenP
7 eqid toMetSpM=toMetSpM
8 7 tmsxms M∞MetXtoMetSpM∞MetSp
9 2 8 syl φtoMetSpM∞MetSp
10 xmstps toMetSpM∞MetSptoMetSpMTopSp
11 9 10 syl φtoMetSpMTopSp
12 eqid toMetSpN=toMetSpN
13 12 tmsxms N∞MetYtoMetSpN∞MetSp
14 3 13 syl φtoMetSpN∞MetSp
15 xmstps toMetSpN∞MetSptoMetSpNTopSp
16 14 15 syl φtoMetSpNTopSp
17 eqid toMetSpM×𝑠toMetSpN=toMetSpM×𝑠toMetSpN
18 eqid TopOpentoMetSpM=TopOpentoMetSpM
19 eqid TopOpentoMetSpN=TopOpentoMetSpN
20 eqid TopOpentoMetSpM×𝑠toMetSpN=TopOpentoMetSpM×𝑠toMetSpN
21 17 18 19 20 xpstopn toMetSpMTopSptoMetSpNTopSpTopOpentoMetSpM×𝑠toMetSpN=TopOpentoMetSpM×tTopOpentoMetSpN
22 11 16 21 syl2anc φTopOpentoMetSpM×𝑠toMetSpN=TopOpentoMetSpM×tTopOpentoMetSpN
23 17 xpsxms toMetSpM∞MetSptoMetSpN∞MetSptoMetSpM×𝑠toMetSpN∞MetSp
24 9 14 23 syl2anc φtoMetSpM×𝑠toMetSpN∞MetSp
25 eqid BasetoMetSpM×𝑠toMetSpN=BasetoMetSpM×𝑠toMetSpN
26 1 reseq1i PBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpN=disttoMetSpM×𝑠toMetSpNBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpN
27 20 25 26 xmstopn toMetSpM×𝑠toMetSpN∞MetSpTopOpentoMetSpM×𝑠toMetSpN=MetOpenPBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpN
28 24 27 syl φTopOpentoMetSpM×𝑠toMetSpN=MetOpenPBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpN
29 eqid BasetoMetSpM=BasetoMetSpM
30 eqid BasetoMetSpN=BasetoMetSpN
31 17 29 30 9 14 1 xpsdsfn2 φPFnBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpN
32 fnresdm PFnBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpNPBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpN=P
33 31 32 syl φPBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpN=P
34 33 fveq2d φMetOpenPBasetoMetSpM×𝑠toMetSpN×BasetoMetSpM×𝑠toMetSpN=MetOpenP
35 28 34 eqtr2d φMetOpenP=TopOpentoMetSpM×𝑠toMetSpN
36 6 35 eqtrid φL=TopOpentoMetSpM×𝑠toMetSpN
37 7 4 tmstopn M∞MetXJ=TopOpentoMetSpM
38 2 37 syl φJ=TopOpentoMetSpM
39 12 5 tmstopn N∞MetYK=TopOpentoMetSpN
40 3 39 syl φK=TopOpentoMetSpN
41 38 40 oveq12d φJ×tK=TopOpentoMetSpM×tTopOpentoMetSpN
42 22 36 41 3eqtr4d φL=J×tK