Metamath Proof Explorer


Theorem topmeet

Description: Two equivalent formulations of the meet of a collection of topologies. (Contributed by Jeff Hankins, 4-Oct-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion topmeet XVSTopOnX𝒫XS=kTopOnX|jSkj

Proof

Step Hyp Ref Expression
1 topmtcl XVSTopOnX𝒫XSTopOnX
2 inss2 𝒫XSS
3 intss1 jSSj
4 2 3 sstrid jS𝒫XSj
5 4 rgen jS𝒫XSj
6 sseq1 k=𝒫XSkj𝒫XSj
7 6 ralbidv k=𝒫XSjSkjjS𝒫XSj
8 7 elrab 𝒫XSkTopOnX|jSkj𝒫XSTopOnXjS𝒫XSj
9 5 8 mpbiran2 𝒫XSkTopOnX|jSkj𝒫XSTopOnX
10 1 9 sylibr XVSTopOnX𝒫XSkTopOnX|jSkj
11 elssuni 𝒫XSkTopOnX|jSkj𝒫XSkTopOnX|jSkj
12 10 11 syl XVSTopOnX𝒫XSkTopOnX|jSkj
13 toponuni kTopOnXX=k
14 eqimss2 X=kkX
15 13 14 syl kTopOnXkX
16 sspwuni k𝒫XkX
17 15 16 sylibr kTopOnXk𝒫X
18 17 3ad2ant2 XVSTopOnXkTopOnXjSkjk𝒫X
19 simp3 XVSTopOnXkTopOnXjSkjjSkj
20 ssint kSjSkj
21 19 20 sylibr XVSTopOnXkTopOnXjSkjkS
22 18 21 ssind XVSTopOnXkTopOnXjSkjk𝒫XS
23 velpw k𝒫𝒫XSk𝒫XS
24 22 23 sylibr XVSTopOnXkTopOnXjSkjk𝒫𝒫XS
25 24 rabssdv XVSTopOnXkTopOnX|jSkj𝒫𝒫XS
26 sspwuni kTopOnX|jSkj𝒫𝒫XSkTopOnX|jSkj𝒫XS
27 25 26 sylib XVSTopOnXkTopOnX|jSkj𝒫XS
28 12 27 eqssd XVSTopOnX𝒫XS=kTopOnX|jSkj