Description: Two equivalent formulations of the meet of a collection of topologies. (Contributed by Jeff Hankins, 4-Oct-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | topmeet | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topmtcl | |
|
2 | inss2 | |
|
3 | intss1 | |
|
4 | 2 3 | sstrid | |
5 | 4 | rgen | |
6 | sseq1 | |
|
7 | 6 | ralbidv | |
8 | 7 | elrab | |
9 | 5 8 | mpbiran2 | |
10 | 1 9 | sylibr | |
11 | elssuni | |
|
12 | 10 11 | syl | |
13 | toponuni | |
|
14 | eqimss2 | |
|
15 | 13 14 | syl | |
16 | sspwuni | |
|
17 | 15 16 | sylibr | |
18 | 17 | 3ad2ant2 | |
19 | simp3 | |
|
20 | ssint | |
|
21 | 19 20 | sylibr | |
22 | 18 21 | ssind | |
23 | velpw | |
|
24 | 22 23 | sylibr | |
25 | 24 | rabssdv | |
26 | sspwuni | |
|
27 | 25 26 | sylib | |
28 | 12 27 | eqssd | |