Metamath Proof Explorer


Theorem topmeet

Description: Two equivalent formulations of the meet of a collection of topologies. (Contributed by Jeff Hankins, 4-Oct-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion topmeet X V S TopOn X 𝒫 X S = k TopOn X | j S k j

Proof

Step Hyp Ref Expression
1 topmtcl X V S TopOn X 𝒫 X S TopOn X
2 inss2 𝒫 X S S
3 intss1 j S S j
4 2 3 sstrid j S 𝒫 X S j
5 4 rgen j S 𝒫 X S j
6 sseq1 k = 𝒫 X S k j 𝒫 X S j
7 6 ralbidv k = 𝒫 X S j S k j j S 𝒫 X S j
8 7 elrab 𝒫 X S k TopOn X | j S k j 𝒫 X S TopOn X j S 𝒫 X S j
9 5 8 mpbiran2 𝒫 X S k TopOn X | j S k j 𝒫 X S TopOn X
10 1 9 sylibr X V S TopOn X 𝒫 X S k TopOn X | j S k j
11 elssuni 𝒫 X S k TopOn X | j S k j 𝒫 X S k TopOn X | j S k j
12 10 11 syl X V S TopOn X 𝒫 X S k TopOn X | j S k j
13 toponuni k TopOn X X = k
14 eqimss2 X = k k X
15 13 14 syl k TopOn X k X
16 sspwuni k 𝒫 X k X
17 15 16 sylibr k TopOn X k 𝒫 X
18 17 3ad2ant2 X V S TopOn X k TopOn X j S k j k 𝒫 X
19 simp3 X V S TopOn X k TopOn X j S k j j S k j
20 ssint k S j S k j
21 19 20 sylibr X V S TopOn X k TopOn X j S k j k S
22 18 21 ssind X V S TopOn X k TopOn X j S k j k 𝒫 X S
23 velpw k 𝒫 𝒫 X S k 𝒫 X S
24 22 23 sylibr X V S TopOn X k TopOn X j S k j k 𝒫 𝒫 X S
25 24 rabssdv X V S TopOn X k TopOn X | j S k j 𝒫 𝒫 X S
26 sspwuni k TopOn X | j S k j 𝒫 𝒫 X S k TopOn X | j S k j 𝒫 X S
27 25 26 sylib X V S TopOn X k TopOn X | j S k j 𝒫 X S
28 12 27 eqssd X V S TopOn X 𝒫 X S = k TopOn X | j S k j