Metamath Proof Explorer


Theorem totbndss

Description: A subset of a totally bounded metric space is totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion totbndss MTotBndXSXMS×STotBndS

Proof

Step Hyp Ref Expression
1 istotbnd MTotBndXMMetXd+vFinv=XbvxXb=xballMd
2 1 simprbi MTotBndXd+vFinv=XbvxXb=xballMd
3 sseq2 v=XSvSX
4 3 biimprcd SXv=XSv
5 4 anim1d SXv=XbvxXb=xballMdSvbvxXb=xballMd
6 5 reximdv SXvFinv=XbvxXb=xballMdvFinSvbvxXb=xballMd
7 6 ralimdv SXd+vFinv=XbvxXb=xballMdd+vFinSvbvxXb=xballMd
8 2 7 mpan9 MTotBndXSXd+vFinSvbvxXb=xballMd
9 totbndmet MTotBndXMMetX
10 eqid MS×S=MS×S
11 10 sstotbnd MMetXSXMS×STotBndSd+vFinSvbvxXb=xballMd
12 9 11 sylan MTotBndXSXMS×STotBndSd+vFinSvbvxXb=xballMd
13 8 12 mpbird MTotBndXSXMS×STotBndS