Metamath Proof Explorer


Theorem equivtotbnd

Description: If the metric M is "strongly finer" than N (meaning that there is a positive real constant R such that N ( x , y ) <_ R x. M ( x , y ) ), then total boundedness of M implies total boundedness of N . (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is totally bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015)

Ref Expression
Hypotheses equivtotbnd.1 φ M TotBnd X
equivtotbnd.2 φ N Met X
equivtotbnd.3 φ R +
equivtotbnd.4 φ x X y X x N y R x M y
Assertion equivtotbnd φ N TotBnd X

Proof

Step Hyp Ref Expression
1 equivtotbnd.1 φ M TotBnd X
2 equivtotbnd.2 φ N Met X
3 equivtotbnd.3 φ R +
4 equivtotbnd.4 φ x X y X x N y R x M y
5 simpr φ r + r +
6 3 adantr φ r + R +
7 5 6 rpdivcld φ r + r R +
8 1 adantr φ r + M TotBnd X
9 istotbnd3 M TotBnd X M Met X s + v 𝒫 X Fin x v x ball M s = X
10 9 simprbi M TotBnd X s + v 𝒫 X Fin x v x ball M s = X
11 8 10 syl φ r + s + v 𝒫 X Fin x v x ball M s = X
12 oveq2 s = r R x ball M s = x ball M r R
13 12 iuneq2d s = r R x v x ball M s = x v x ball M r R
14 13 eqeq1d s = r R x v x ball M s = X x v x ball M r R = X
15 14 rexbidv s = r R v 𝒫 X Fin x v x ball M s = X v 𝒫 X Fin x v x ball M r R = X
16 15 rspcv r R + s + v 𝒫 X Fin x v x ball M s = X v 𝒫 X Fin x v x ball M r R = X
17 7 11 16 sylc φ r + v 𝒫 X Fin x v x ball M r R = X
18 elfpw v 𝒫 X Fin v X v Fin
19 18 simplbi v 𝒫 X Fin v X
20 19 adantl φ r + v 𝒫 X Fin v X
21 20 sselda φ r + v 𝒫 X Fin x v x X
22 eqid MetOpen N = MetOpen N
23 eqid MetOpen M = MetOpen M
24 9 simplbi M TotBnd X M Met X
25 1 24 syl φ M Met X
26 22 23 2 25 3 4 metss2lem φ x X r + x ball M r R x ball N r
27 26 anass1rs φ r + x X x ball M r R x ball N r
28 27 adantlr φ r + v 𝒫 X Fin x X x ball M r R x ball N r
29 21 28 syldan φ r + v 𝒫 X Fin x v x ball M r R x ball N r
30 29 ralrimiva φ r + v 𝒫 X Fin x v x ball M r R x ball N r
31 ss2iun x v x ball M r R x ball N r x v x ball M r R x v x ball N r
32 30 31 syl φ r + v 𝒫 X Fin x v x ball M r R x v x ball N r
33 sseq1 x v x ball M r R = X x v x ball M r R x v x ball N r X x v x ball N r
34 32 33 syl5ibcom φ r + v 𝒫 X Fin x v x ball M r R = X X x v x ball N r
35 2 ad3antrrr φ r + v 𝒫 X Fin x v N Met X
36 metxmet N Met X N ∞Met X
37 35 36 syl φ r + v 𝒫 X Fin x v N ∞Met X
38 simpllr φ r + v 𝒫 X Fin x v r +
39 38 rpxrd φ r + v 𝒫 X Fin x v r *
40 blssm N ∞Met X x X r * x ball N r X
41 37 21 39 40 syl3anc φ r + v 𝒫 X Fin x v x ball N r X
42 41 ralrimiva φ r + v 𝒫 X Fin x v x ball N r X
43 iunss x v x ball N r X x v x ball N r X
44 42 43 sylibr φ r + v 𝒫 X Fin x v x ball N r X
45 34 44 jctild φ r + v 𝒫 X Fin x v x ball M r R = X x v x ball N r X X x v x ball N r
46 eqss x v x ball N r = X x v x ball N r X X x v x ball N r
47 45 46 syl6ibr φ r + v 𝒫 X Fin x v x ball M r R = X x v x ball N r = X
48 47 reximdva φ r + v 𝒫 X Fin x v x ball M r R = X v 𝒫 X Fin x v x ball N r = X
49 17 48 mpd φ r + v 𝒫 X Fin x v x ball N r = X
50 49 ralrimiva φ r + v 𝒫 X Fin x v x ball N r = X
51 istotbnd3 N TotBnd X N Met X r + v 𝒫 X Fin x v x ball N r = X
52 2 50 51 sylanbrc φ N TotBnd X