| Step |
Hyp |
Ref |
Expression |
| 1 |
|
istotbnd |
|
| 2 |
|
oveq1 |
|
| 3 |
2
|
eqeq2d |
|
| 4 |
3
|
ac6sfi |
|
| 5 |
4
|
ex |
|
| 6 |
5
|
ad2antlr |
|
| 7 |
|
simprrl |
|
| 8 |
7
|
frnd |
|
| 9 |
|
simplr |
|
| 10 |
7
|
ffnd |
|
| 11 |
|
dffn4 |
|
| 12 |
10 11
|
sylib |
|
| 13 |
|
fofi |
|
| 14 |
9 12 13
|
syl2anc |
|
| 15 |
|
elfpw |
|
| 16 |
8 14 15
|
sylanbrc |
|
| 17 |
2
|
eleq2d |
|
| 18 |
17
|
rexrn |
|
| 19 |
10 18
|
syl |
|
| 20 |
|
eliun |
|
| 21 |
|
eliun |
|
| 22 |
19 20 21
|
3bitr4g |
|
| 23 |
22
|
eqrdv |
|
| 24 |
|
simprrr |
|
| 25 |
|
iuneq2 |
|
| 26 |
24 25
|
syl |
|
| 27 |
|
uniiun |
|
| 28 |
|
simprl |
|
| 29 |
27 28
|
eqtr3id |
|
| 30 |
23 26 29
|
3eqtr2d |
|
| 31 |
|
iuneq1 |
|
| 32 |
31
|
eqeq1d |
|
| 33 |
32
|
rspcev |
|
| 34 |
16 30 33
|
syl2anc |
|
| 35 |
34
|
expr |
|
| 36 |
35
|
exlimdv |
|
| 37 |
6 36
|
syld |
|
| 38 |
37
|
expimpd |
|
| 39 |
38
|
rexlimdva |
|
| 40 |
|
elfpw |
|
| 41 |
40
|
simprbi |
|
| 42 |
41
|
ad2antrl |
|
| 43 |
|
mptfi |
|
| 44 |
|
rnfi |
|
| 45 |
42 43 44
|
3syl |
|
| 46 |
|
ovex |
|
| 47 |
46
|
dfiun3 |
|
| 48 |
|
simprr |
|
| 49 |
47 48
|
eqtr3id |
|
| 50 |
|
eqid |
|
| 51 |
50
|
rnmpt |
|
| 52 |
40
|
simplbi |
|
| 53 |
52
|
ad2antrl |
|
| 54 |
|
ssrexv |
|
| 55 |
53 54
|
syl |
|
| 56 |
55
|
ss2abdv |
|
| 57 |
51 56
|
eqsstrid |
|
| 58 |
|
unieq |
|
| 59 |
58
|
eqeq1d |
|
| 60 |
|
ssabral |
|
| 61 |
|
sseq1 |
|
| 62 |
60 61
|
bitr3id |
|
| 63 |
59 62
|
anbi12d |
|
| 64 |
63
|
rspcev |
|
| 65 |
45 49 57 64
|
syl12anc |
|
| 66 |
65
|
expr |
|
| 67 |
66
|
rexlimdva |
|
| 68 |
39 67
|
impbid |
|
| 69 |
68
|
ralbidv |
|
| 70 |
69
|
pm5.32i |
|
| 71 |
1 70
|
bitri |
|