Metamath Proof Explorer


Theorem sstotbnd

Description: Condition for a subset of a metric space to be totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypothesis sstotbnd.2 N=MY×Y
Assertion sstotbnd MMetXYXNTotBndYd+vFinYvbvxXb=xballMd

Proof

Step Hyp Ref Expression
1 sstotbnd.2 N=MY×Y
2 1 sstotbnd2 MMetXYXNTotBndYd+u𝒫XFinYxuxballMd
3 elfpw u𝒫XFinuXuFin
4 3 simprbi u𝒫XFinuFin
5 mptfi uFinxuxballMdFin
6 rnfi xuxballMdFinranxuxballMdFin
7 4 5 6 3syl u𝒫XFinranxuxballMdFin
8 7 ad2antrl MMetXYXu𝒫XFinYxuxballMdranxuxballMdFin
9 simprr MMetXYXu𝒫XFinYxuxballMdYxuxballMd
10 eqid xuxballMd=xuxballMd
11 10 rnmpt ranxuxballMd=b|xub=xballMd
12 3 simplbi u𝒫XFinuX
13 ssrexv uXxub=xballMdxXb=xballMd
14 12 13 syl u𝒫XFinxub=xballMdxXb=xballMd
15 14 ad2antrl MMetXYXu𝒫XFinYxuxballMdxub=xballMdxXb=xballMd
16 15 ss2abdv MMetXYXu𝒫XFinYxuxballMdb|xub=xballMdb|xXb=xballMd
17 11 16 eqsstrid MMetXYXu𝒫XFinYxuxballMdranxuxballMdb|xXb=xballMd
18 unieq v=ranxuxballMdv=ranxuxballMd
19 ovex xballMdV
20 19 dfiun3 xuxballMd=ranxuxballMd
21 18 20 eqtr4di v=ranxuxballMdv=xuxballMd
22 21 sseq2d v=ranxuxballMdYvYxuxballMd
23 ssabral vb|xXb=xballMdbvxXb=xballMd
24 sseq1 v=ranxuxballMdvb|xXb=xballMdranxuxballMdb|xXb=xballMd
25 23 24 bitr3id v=ranxuxballMdbvxXb=xballMdranxuxballMdb|xXb=xballMd
26 22 25 anbi12d v=ranxuxballMdYvbvxXb=xballMdYxuxballMdranxuxballMdb|xXb=xballMd
27 26 rspcev ranxuxballMdFinYxuxballMdranxuxballMdb|xXb=xballMdvFinYvbvxXb=xballMd
28 8 9 17 27 syl12anc MMetXYXu𝒫XFinYxuxballMdvFinYvbvxXb=xballMd
29 28 rexlimdvaa MMetXYXu𝒫XFinYxuxballMdvFinYvbvxXb=xballMd
30 oveq1 x=fbxballMd=fbballMd
31 30 eqeq2d x=fbb=xballMdb=fbballMd
32 31 ac6sfi vFinbvxXb=xballMdff:vXbvb=fbballMd
33 32 adantrl vFinYvbvxXb=xballMdff:vXbvb=fbballMd
34 33 adantl MMetXYXvFinYvbvxXb=xballMdff:vXbvb=fbballMd
35 frn f:vXranfX
36 35 ad2antrl MMetXYXvFinYvbvxXb=xballMdf:vXbvb=fbballMdranfX
37 simplrl MMetXYXvFinYvbvxXb=xballMdf:vXbvb=fbballMdvFin
38 ffn f:vXfFnv
39 38 ad2antrl MMetXYXvFinYvbvxXb=xballMdf:vXbvb=fbballMdfFnv
40 dffn4 fFnvf:vontoranf
41 39 40 sylib MMetXYXvFinYvbvxXb=xballMdf:vXbvb=fbballMdf:vontoranf
42 fofi vFinf:vontoranfranfFin
43 37 41 42 syl2anc MMetXYXvFinYvbvxXb=xballMdf:vXbvb=fbballMdranfFin
44 elfpw ranf𝒫XFinranfXranfFin
45 36 43 44 sylanbrc MMetXYXvFinYvbvxXb=xballMdf:vXbvb=fbballMdranf𝒫XFin
46 simprrl MMetXYXvFinYvbvxXb=xballMdYv
47 46 adantr MMetXYXvFinYvbvxXb=xballMdf:vXbvb=fbballMdYv
48 uniiun v=bvb
49 iuneq2 bvb=fbballMdbvb=bvfbballMd
50 48 49 eqtrid bvb=fbballMdv=bvfbballMd
51 50 ad2antll MMetXYXvFinYvbvxXb=xballMdf:vXbvb=fbballMdv=bvfbballMd
52 47 51 sseqtrd MMetXYXvFinYvbvxXb=xballMdf:vXbvb=fbballMdYbvfbballMd
53 30 eleq2d x=fbyxballMdyfbballMd
54 53 rexrn fFnvxranfyxballMdbvyfbballMd
55 eliun yxranfxballMdxranfyxballMd
56 eliun ybvfbballMdbvyfbballMd
57 54 55 56 3bitr4g fFnvyxranfxballMdybvfbballMd
58 57 eqrdv fFnvxranfxballMd=bvfbballMd
59 39 58 syl MMetXYXvFinYvbvxXb=xballMdf:vXbvb=fbballMdxranfxballMd=bvfbballMd
60 52 59 sseqtrrd MMetXYXvFinYvbvxXb=xballMdf:vXbvb=fbballMdYxranfxballMd
61 iuneq1 u=ranfxuxballMd=xranfxballMd
62 61 sseq2d u=ranfYxuxballMdYxranfxballMd
63 62 rspcev ranf𝒫XFinYxranfxballMdu𝒫XFinYxuxballMd
64 45 60 63 syl2anc MMetXYXvFinYvbvxXb=xballMdf:vXbvb=fbballMdu𝒫XFinYxuxballMd
65 34 64 exlimddv MMetXYXvFinYvbvxXb=xballMdu𝒫XFinYxuxballMd
66 65 rexlimdvaa MMetXYXvFinYvbvxXb=xballMdu𝒫XFinYxuxballMd
67 29 66 impbid MMetXYXu𝒫XFinYxuxballMdvFinYvbvxXb=xballMd
68 67 ralbidv MMetXYXd+u𝒫XFinYxuxballMdd+vFinYvbvxXb=xballMd
69 2 68 bitrd MMetXYXNTotBndYd+vFinYvbvxXb=xballMd