Description: Condition for a subset of a metric space to be totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sstotbnd.2 | |
|
Assertion | sstotbnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstotbnd.2 | |
|
2 | 1 | sstotbnd2 | |
3 | elfpw | |
|
4 | 3 | simprbi | |
5 | mptfi | |
|
6 | rnfi | |
|
7 | 4 5 6 | 3syl | |
8 | 7 | ad2antrl | |
9 | simprr | |
|
10 | eqid | |
|
11 | 10 | rnmpt | |
12 | 3 | simplbi | |
13 | ssrexv | |
|
14 | 12 13 | syl | |
15 | 14 | ad2antrl | |
16 | 15 | ss2abdv | |
17 | 11 16 | eqsstrid | |
18 | unieq | |
|
19 | ovex | |
|
20 | 19 | dfiun3 | |
21 | 18 20 | eqtr4di | |
22 | 21 | sseq2d | |
23 | ssabral | |
|
24 | sseq1 | |
|
25 | 23 24 | bitr3id | |
26 | 22 25 | anbi12d | |
27 | 26 | rspcev | |
28 | 8 9 17 27 | syl12anc | |
29 | 28 | rexlimdvaa | |
30 | oveq1 | |
|
31 | 30 | eqeq2d | |
32 | 31 | ac6sfi | |
33 | 32 | adantrl | |
34 | 33 | adantl | |
35 | frn | |
|
36 | 35 | ad2antrl | |
37 | simplrl | |
|
38 | ffn | |
|
39 | 38 | ad2antrl | |
40 | dffn4 | |
|
41 | 39 40 | sylib | |
42 | fofi | |
|
43 | 37 41 42 | syl2anc | |
44 | elfpw | |
|
45 | 36 43 44 | sylanbrc | |
46 | simprrl | |
|
47 | 46 | adantr | |
48 | uniiun | |
|
49 | iuneq2 | |
|
50 | 48 49 | eqtrid | |
51 | 50 | ad2antll | |
52 | 47 51 | sseqtrd | |
53 | 30 | eleq2d | |
54 | 53 | rexrn | |
55 | eliun | |
|
56 | eliun | |
|
57 | 54 55 56 | 3bitr4g | |
58 | 57 | eqrdv | |
59 | 39 58 | syl | |
60 | 52 59 | sseqtrrd | |
61 | iuneq1 | |
|
62 | 61 | sseq2d | |
63 | 62 | rspcev | |
64 | 45 60 63 | syl2anc | |
65 | 34 64 | exlimddv | |
66 | 65 | rexlimdvaa | |
67 | 29 66 | impbid | |
68 | 67 | ralbidv | |
69 | 2 68 | bitrd | |