Metamath Proof Explorer


Theorem tsmsinv

Description: Inverse of an infinite group sum. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses tsmsinv.b B=BaseG
tsmsinv.p I=invgG
tsmsinv.1 φGCMnd
tsmsinv.2 φGTopGrp
tsmsinv.a φAV
tsmsinv.f φF:AB
tsmsinv.x φXGtsumsF
Assertion tsmsinv φIXGtsumsIF

Proof

Step Hyp Ref Expression
1 tsmsinv.b B=BaseG
2 tsmsinv.p I=invgG
3 tsmsinv.1 φGCMnd
4 tsmsinv.2 φGTopGrp
5 tsmsinv.a φAV
6 tsmsinv.f φF:AB
7 tsmsinv.x φXGtsumsF
8 eqid TopOpenG=TopOpenG
9 tgptps GTopGrpGTopSp
10 4 9 syl φGTopSp
11 tgpgrp GTopGrpGGrp
12 4 11 syl φGGrp
13 isabl GAbelGGrpGCMnd
14 12 3 13 sylanbrc φGAbel
15 1 2 invghm GAbelIGGrpHomG
16 14 15 sylib φIGGrpHomG
17 ghmmhm IGGrpHomGIGMndHomG
18 16 17 syl φIGMndHomG
19 8 2 tgpinv GTopGrpITopOpenGCnTopOpenG
20 4 19 syl φITopOpenGCnTopOpenG
21 1 8 8 3 10 3 10 18 20 5 6 7 tsmsmhm φIXGtsumsIF