Description: There is a homeomorphism from X X. Y to Y X. X . (Contributed by Mario Carneiro, 21-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | txswaphmeo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | simpr | |
|
3 | 1 2 | cnmpt2nd | |
4 | 1 2 | cnmpt1st | |
5 | 1 2 3 4 | cnmpt2t | |
6 | opelxpi | |
|
7 | 6 | ancoms | |
8 | 7 | adantl | |
9 | 8 | ralrimivva | |
10 | eqid | |
|
11 | 10 | fmpo | |
12 | 9 11 | sylib | |
13 | opelxpi | |
|
14 | 13 | ancoms | |
15 | 14 | adantl | |
16 | 15 | ralrimivva | |
17 | eqid | |
|
18 | 17 | fmpo | |
19 | 16 18 | sylib | |
20 | txswaphmeolem | |
|
21 | txswaphmeolem | |
|
22 | fcof1o | |
|
23 | 20 21 22 | mpanr12 | |
24 | 12 19 23 | syl2anc | |
25 | 24 | simprd | |
26 | 2 1 | cnmpt2nd | |
27 | 2 1 | cnmpt1st | |
28 | 2 1 26 27 | cnmpt2t | |
29 | 25 28 | eqeltrd | |
30 | ishmeo | |
|
31 | 5 29 30 | sylanbrc | |