Metamath Proof Explorer


Theorem txswaphmeo

Description: There is a homeomorphism from X X. Y to Y X. X . (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion txswaphmeo JTopOnXKTopOnYxX,yYyxJ×tKHomeoK×tJ

Proof

Step Hyp Ref Expression
1 simpl JTopOnXKTopOnYJTopOnX
2 simpr JTopOnXKTopOnYKTopOnY
3 1 2 cnmpt2nd JTopOnXKTopOnYxX,yYyJ×tKCnK
4 1 2 cnmpt1st JTopOnXKTopOnYxX,yYxJ×tKCnJ
5 1 2 3 4 cnmpt2t JTopOnXKTopOnYxX,yYyxJ×tKCnK×tJ
6 opelxpi yYxXyxY×X
7 6 ancoms xXyYyxY×X
8 7 adantl JTopOnXKTopOnYxXyYyxY×X
9 8 ralrimivva JTopOnXKTopOnYxXyYyxY×X
10 eqid xX,yYyx=xX,yYyx
11 10 fmpo xXyYyxY×XxX,yYyx:X×YY×X
12 9 11 sylib JTopOnXKTopOnYxX,yYyx:X×YY×X
13 opelxpi xXyYxyX×Y
14 13 ancoms yYxXxyX×Y
15 14 adantl JTopOnXKTopOnYyYxXxyX×Y
16 15 ralrimivva JTopOnXKTopOnYyYxXxyX×Y
17 eqid yY,xXxy=yY,xXxy
18 17 fmpo yYxXxyX×YyY,xXxy:Y×XX×Y
19 16 18 sylib JTopOnXKTopOnYyY,xXxy:Y×XX×Y
20 txswaphmeolem xX,yYyxyY,xXxy=IY×X
21 txswaphmeolem yY,xXxyxX,yYyx=IX×Y
22 fcof1o xX,yYyx:X×YY×XyY,xXxy:Y×XX×YxX,yYyxyY,xXxy=IY×XyY,xXxyxX,yYyx=IX×YxX,yYyx:X×Y1-1 ontoY×XxX,yYyx-1=yY,xXxy
23 20 21 22 mpanr12 xX,yYyx:X×YY×XyY,xXxy:Y×XX×YxX,yYyx:X×Y1-1 ontoY×XxX,yYyx-1=yY,xXxy
24 12 19 23 syl2anc JTopOnXKTopOnYxX,yYyx:X×Y1-1 ontoY×XxX,yYyx-1=yY,xXxy
25 24 simprd JTopOnXKTopOnYxX,yYyx-1=yY,xXxy
26 2 1 cnmpt2nd JTopOnXKTopOnYyY,xXxK×tJCnJ
27 2 1 cnmpt1st JTopOnXKTopOnYyY,xXyK×tJCnK
28 2 1 26 27 cnmpt2t JTopOnXKTopOnYyY,xXxyK×tJCnJ×tK
29 25 28 eqeltrd JTopOnXKTopOnYxX,yYyx-1K×tJCnJ×tK
30 ishmeo xX,yYyxJ×tKHomeoK×tJxX,yYyxJ×tKCnK×tJxX,yYyx-1K×tJCnJ×tK
31 5 29 30 sylanbrc JTopOnXKTopOnYxX,yYyxJ×tKHomeoK×tJ