Metamath Proof Explorer


Theorem uhgrnbgr0nb

Description: A vertex which is not endpoint of an edge has no neighbor in a hypergraph. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 26-Oct-2020)

Ref Expression
Assertion uhgrnbgr0nb GUHGrapheEdgGNeGNeighbVtxN=

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid EdgG=EdgG
3 1 2 nbuhgr GUHGraphNVGNeighbVtxN=nVtxGN|eEdgGNne
4 3 adantlr GUHGrapheEdgGNeNVGNeighbVtxN=nVtxGN|eEdgGNne
5 df-nel Ne¬Ne
6 prssg NVnVtxGNNeneNne
7 simpl NeneNe
8 6 7 syl6bir NVnVtxGNNneNe
9 8 ad2antlr GUHGraphNVnVtxGNeEdgGNneNe
10 9 con3d GUHGraphNVnVtxGNeEdgG¬Ne¬Nne
11 5 10 biimtrid GUHGraphNVnVtxGNeEdgGNe¬Nne
12 11 ralimdva GUHGraphNVnVtxGNeEdgGNeeEdgG¬Nne
13 12 imp GUHGraphNVnVtxGNeEdgGNeeEdgG¬Nne
14 ralnex eEdgG¬Nne¬eEdgGNne
15 13 14 sylib GUHGraphNVnVtxGNeEdgGNe¬eEdgGNne
16 15 expcom eEdgGNeGUHGraphNVnVtxGN¬eEdgGNne
17 16 expd eEdgGNeGUHGraphNVnVtxGN¬eEdgGNne
18 17 impcom GUHGrapheEdgGNeNVnVtxGN¬eEdgGNne
19 18 expdimp GUHGrapheEdgGNeNVnVtxGN¬eEdgGNne
20 19 ralrimiv GUHGrapheEdgGNeNVnVtxGN¬eEdgGNne
21 rabeq0 nVtxGN|eEdgGNne=nVtxGN¬eEdgGNne
22 20 21 sylibr GUHGrapheEdgGNeNVnVtxGN|eEdgGNne=
23 4 22 eqtrd GUHGrapheEdgGNeNVGNeighbVtxN=
24 23 expcom NVGUHGrapheEdgGNeGNeighbVtxN=
25 id ¬NV¬NV
26 25 intnand ¬NV¬GVNV
27 nbgrprc0 ¬GVNVGNeighbVtxN=
28 26 27 syl ¬NVGNeighbVtxN=
29 28 a1d ¬NVGUHGrapheEdgGNeGNeighbVtxN=
30 24 29 pm2.61i GUHGrapheEdgGNeGNeighbVtxN=