Description: If F is a sequence of differentiable functions on X which converge pointwise to G , and the derivatives of F ( n ) converge uniformly to H , then G is differentiable with derivative H . (Contributed by Mario Carneiro, 27-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ulmdv.z | |
|
ulmdv.s | |
||
ulmdv.m | |
||
ulmdv.f | |
||
ulmdv.g | |
||
ulmdv.l | |
||
ulmdv.u | |
||
Assertion | ulmdv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmdv.z | |
|
2 | ulmdv.s | |
|
3 | ulmdv.m | |
|
4 | ulmdv.f | |
|
5 | ulmdv.g | |
|
6 | ulmdv.l | |
|
7 | ulmdv.u | |
|
8 | dvfg | |
|
9 | 2 8 | syl | |
10 | recnprss | |
|
11 | 2 10 | syl | |
12 | biidd | |
|
13 | 1 2 3 4 5 6 7 | ulmdvlem2 | |
14 | dvbsss | |
|
15 | 13 14 | eqsstrrdi | |
16 | 15 | ralrimiva | |
17 | uzid | |
|
18 | 3 17 | syl | |
19 | 18 1 | eleqtrrdi | |
20 | 12 16 19 | rspcdva | |
21 | 11 5 20 | dvbss | |
22 | 1 2 3 4 5 6 7 | ulmdvlem3 | |
23 | vex | |
|
24 | fvex | |
|
25 | 23 24 | breldm | |
26 | 22 25 | syl | |
27 | 21 26 | eqelssd | |
28 | 27 | feq2d | |
29 | 9 28 | mpbid | |
30 | 29 | ffnd | |
31 | ulmcl | |
|
32 | 7 31 | syl | |
33 | 32 | ffnd | |
34 | 9 | ffund | |
35 | 34 | adantr | |
36 | funbrfv | |
|
37 | 35 22 36 | sylc | |
38 | 30 33 37 | eqfnfvd | |