Metamath Proof Explorer


Theorem ulmdv

Description: If F is a sequence of differentiable functions on X which converge pointwise to G , and the derivatives of F ( n ) converge uniformly to H , then G is differentiable with derivative H . (Contributed by Mario Carneiro, 27-Feb-2015)

Ref Expression
Hypotheses ulmdv.z Z = M
ulmdv.s φ S
ulmdv.m φ M
ulmdv.f φ F : Z X
ulmdv.g φ G : X
ulmdv.l φ z X k Z F k z G z
ulmdv.u φ k Z S D F k u X H
Assertion ulmdv φ S D G = H

Proof

Step Hyp Ref Expression
1 ulmdv.z Z = M
2 ulmdv.s φ S
3 ulmdv.m φ M
4 ulmdv.f φ F : Z X
5 ulmdv.g φ G : X
6 ulmdv.l φ z X k Z F k z G z
7 ulmdv.u φ k Z S D F k u X H
8 dvfg S G S : dom G S
9 2 8 syl φ G S : dom G S
10 recnprss S S
11 2 10 syl φ S
12 biidd k = M X S X S
13 1 2 3 4 5 6 7 ulmdvlem2 φ k Z dom F k S = X
14 dvbsss dom F k S S
15 13 14 eqsstrrdi φ k Z X S
16 15 ralrimiva φ k Z X S
17 uzid M M M
18 3 17 syl φ M M
19 18 1 eleqtrrdi φ M Z
20 12 16 19 rspcdva φ X S
21 11 5 20 dvbss φ dom G S X
22 1 2 3 4 5 6 7 ulmdvlem3 φ z X z G S H z
23 vex z V
24 fvex H z V
25 23 24 breldm z G S H z z dom G S
26 22 25 syl φ z X z dom G S
27 21 26 eqelssd φ dom G S = X
28 27 feq2d φ G S : dom G S G S : X
29 9 28 mpbid φ G S : X
30 29 ffnd φ G S Fn X
31 ulmcl k Z S D F k u X H H : X
32 7 31 syl φ H : X
33 32 ffnd φ H Fn X
34 9 ffund φ Fun G S
35 34 adantr φ z X Fun G S
36 funbrfv Fun G S z G S H z G S z = H z
37 35 22 36 sylc φ z X G S z = H z
38 30 33 37 eqfnfvd φ S D G = H