Metamath Proof Explorer


Theorem ulmdv

Description: If F is a sequence of differentiable functions on X which converge pointwise to G , and the derivatives of F ( n ) converge uniformly to H , then G is differentiable with derivative H . (Contributed by Mario Carneiro, 27-Feb-2015)

Ref Expression
Hypotheses ulmdv.z Z=M
ulmdv.s φS
ulmdv.m φM
ulmdv.f φF:ZX
ulmdv.g φG:X
ulmdv.l φzXkZFkzGz
ulmdv.u φkZSDFkuXH
Assertion ulmdv φSDG=H

Proof

Step Hyp Ref Expression
1 ulmdv.z Z=M
2 ulmdv.s φS
3 ulmdv.m φM
4 ulmdv.f φF:ZX
5 ulmdv.g φG:X
6 ulmdv.l φzXkZFkzGz
7 ulmdv.u φkZSDFkuXH
8 dvfg SGS:domGS
9 2 8 syl φGS:domGS
10 recnprss SS
11 2 10 syl φS
12 biidd k=MXSXS
13 1 2 3 4 5 6 7 ulmdvlem2 φkZdomFkS=X
14 dvbsss domFkSS
15 13 14 eqsstrrdi φkZXS
16 15 ralrimiva φkZXS
17 uzid MMM
18 3 17 syl φMM
19 18 1 eleqtrrdi φMZ
20 12 16 19 rspcdva φXS
21 11 5 20 dvbss φdomGSX
22 1 2 3 4 5 6 7 ulmdvlem3 φzXzGSHz
23 vex zV
24 fvex HzV
25 23 24 breldm zGSHzzdomGS
26 22 25 syl φzXzdomGS
27 21 26 eqelssd φdomGS=X
28 27 feq2d φGS:domGSGS:X
29 9 28 mpbid φGS:X
30 29 ffnd φGSFnX
31 ulmcl kZSDFkuXHH:X
32 7 31 syl φH:X
33 32 ffnd φHFnX
34 9 ffund φFunGS
35 34 adantr φzXFunGS
36 funbrfv FunGSzGSHzGSz=Hz
37 35 22 36 sylc φzXGSz=Hz
38 30 33 37 eqfnfvd φSDG=H