Metamath Proof Explorer


Theorem ulmuni

Description: A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017)

Ref Expression
Assertion ulmuni FuSGFuSHG=H

Proof

Step Hyp Ref Expression
1 ulmcl FuSGG:S
2 1 adantr FuSGFuSHG:S
3 2 ffnd FuSGFuSHGFnS
4 ulmcl FuSHH:S
5 4 adantl FuSGFuSHH:S
6 5 ffnd FuSGFuSHHFnS
7 eqid n=n
8 simplr FuSGFuSHxSnF:nSn
9 simpr FuSGFuSHxSnF:nSF:nS
10 simpllr FuSGFuSHxSnF:nSxS
11 fvex nV
12 11 mptex inFixV
13 12 a1i FuSGFuSHxSnF:nSinFixV
14 fveq2 i=kFi=Fk
15 14 fveq1d i=kFix=Fkx
16 eqid inFix=inFix
17 fvex FkxV
18 15 16 17 fvmpt kninFixk=Fkx
19 18 eqcomd knFkx=inFixk
20 19 adantl FuSGFuSHxSnF:nSknFkx=inFixk
21 simp-4l FuSGFuSHxSnF:nSFuSG
22 7 8 9 10 13 20 21 ulmclm FuSGFuSHxSnF:nSinFixGx
23 simp-4r FuSGFuSHxSnF:nSFuSH
24 7 8 9 10 13 20 23 ulmclm FuSGFuSHxSnF:nSinFixHx
25 climuni inFixGxinFixHxGx=Hx
26 22 24 25 syl2anc FuSGFuSHxSnF:nSGx=Hx
27 ulmf FuSGnF:nS
28 27 ad2antrr FuSGFuSHxSnF:nS
29 26 28 r19.29a FuSGFuSHxSGx=Hx
30 3 6 29 eqfnfvd FuSGFuSHG=H