Metamath Proof Explorer


Theorem umgrclwwlkge2

Description: A closed walk in a multigraph has a length of at least 2 (because it cannot have a loop). (Contributed by Alexander van der Vekens, 16-Sep-2018) (Revised by AV, 24-Apr-2021)

Ref Expression
Assertion umgrclwwlkge2 GUMGraphPClWWalksG2P

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 clwwlkbp PClWWalksGGVPWordVtxGP
3 2 adantl GUMGraphPClWWalksGGVPWordVtxGP
4 lencl PWordVtxGP0
5 4 3ad2ant2 GVPWordVtxGPP0
6 5 adantl GUMGraphPClWWalksGGVPWordVtxGPP0
7 hasheq0 PWordVtxGP=0P=
8 7 bicomd PWordVtxGP=P=0
9 8 necon3bid PWordVtxGPP0
10 9 biimpd PWordVtxGPP0
11 10 a1i GVPWordVtxGPP0
12 11 3imp GVPWordVtxGPP0
13 12 adantl GUMGraphPClWWalksGGVPWordVtxGPP0
14 clwwlk1loop PClWWalksGP=1P0P0EdgG
15 14 expcom P=1PClWWalksGP0P0EdgG
16 eqid P0=P0
17 eqid EdgG=EdgG
18 17 umgredgne GUMGraphP0P0EdgGP0P0
19 eqneqall P0=P0P0P0GVPWordVtxGPP1
20 16 18 19 mpsyl GUMGraphP0P0EdgGGVPWordVtxGPP1
21 20 expcom P0P0EdgGGUMGraphGVPWordVtxGPP1
22 15 21 syl6 P=1PClWWalksGGUMGraphGVPWordVtxGPP1
23 22 com23 P=1GUMGraphPClWWalksGGVPWordVtxGPP1
24 23 imp4c P=1GUMGraphPClWWalksGGVPWordVtxGPP1
25 neqne ¬P=1P1
26 25 a1d ¬P=1GUMGraphPClWWalksGGVPWordVtxGPP1
27 24 26 pm2.61i GUMGraphPClWWalksGGVPWordVtxGPP1
28 6 13 27 3jca GUMGraphPClWWalksGGVPWordVtxGPP0P0P1
29 3 28 mpdan GUMGraphPClWWalksGP0P0P1
30 nn0n0n1ge2 P0P0P12P
31 29 30 syl GUMGraphPClWWalksG2P
32 31 ex GUMGraphPClWWalksG2P