Description: A closed walk in a multigraph has a length of at least 2 (because it cannot have a loop). (Contributed by Alexander van der Vekens, 16-Sep-2018) (Revised by AV, 24-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | umgrclwwlkge2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | clwwlkbp | |
3 | 2 | adantl | |
4 | lencl | |
|
5 | 4 | 3ad2ant2 | |
6 | 5 | adantl | |
7 | hasheq0 | |
|
8 | 7 | bicomd | |
9 | 8 | necon3bid | |
10 | 9 | biimpd | |
11 | 10 | a1i | |
12 | 11 | 3imp | |
13 | 12 | adantl | |
14 | clwwlk1loop | |
|
15 | 14 | expcom | |
16 | eqid | |
|
17 | eqid | |
|
18 | 17 | umgredgne | |
19 | eqneqall | |
|
20 | 16 18 19 | mpsyl | |
21 | 20 | expcom | |
22 | 15 21 | syl6 | |
23 | 22 | com23 | |
24 | 23 | imp4c | |
25 | neqne | |
|
26 | 25 | a1d | |
27 | 24 26 | pm2.61i | |
28 | 6 13 27 | 3jca | |
29 | 3 28 | mpdan | |
30 | nn0n0n1ge2 | |
|
31 | 29 30 | syl | |
32 | 31 | ex | |