Metamath Proof Explorer


Theorem uncfcl

Description: The uncurry operation takes a functor F : C --> ( D --> E ) to a functor uncurryF ( F ) : C X. D --> E . (Contributed by Mario Carneiro, 13-Jan-2017)

Ref Expression
Hypotheses uncfval.g F=⟨“CDE”⟩uncurryFG
uncfval.c φDCat
uncfval.d φECat
uncfval.f φGCFuncDFuncCatE
Assertion uncfcl φFC×cDFuncE

Proof

Step Hyp Ref Expression
1 uncfval.g F=⟨“CDE”⟩uncurryFG
2 uncfval.c φDCat
3 uncfval.d φECat
4 uncfval.f φGCFuncDFuncCatE
5 1 2 3 4 uncfval φF=DevalFEfuncGfuncC1stFD⟨,⟩FC2ndFD
6 eqid GfuncC1stFD⟨,⟩FC2ndFD=GfuncC1stFD⟨,⟩FC2ndFD
7 eqid DFuncCatE×cD=DFuncCatE×cD
8 eqid C×cD=C×cD
9 funcrcl GCFuncDFuncCatECCatDFuncCatECat
10 4 9 syl φCCatDFuncCatECat
11 10 simpld φCCat
12 eqid C1stFD=C1stFD
13 8 11 2 12 1stfcl φC1stFDC×cDFuncC
14 13 4 cofucl φGfuncC1stFDC×cDFuncDFuncCatE
15 eqid C2ndFD=C2ndFD
16 8 11 2 15 2ndfcl φC2ndFDC×cDFuncD
17 6 7 14 16 prfcl φGfuncC1stFD⟨,⟩FC2ndFDC×cDFuncDFuncCatE×cD
18 eqid DevalFE=DevalFE
19 eqid DFuncCatE=DFuncCatE
20 18 19 2 3 evlfcl φDevalFEDFuncCatE×cDFuncE
21 17 20 cofucl φDevalFEfuncGfuncC1stFD⟨,⟩FC2ndFDC×cDFuncE
22 5 21 eqeltrd φFC×cDFuncE