Metamath Proof Explorer


Theorem unielxp

Description: The membership relation for a Cartesian product is inherited by union. (Contributed by NM, 16-Sep-2006)

Ref Expression
Assertion unielxp AB×CAB×C

Proof

Step Hyp Ref Expression
1 elxp7 AB×CAV×V1stAB2ndAC
2 elvvuni AV×VAA
3 2 adantr AV×V1stAB2ndACAA
4 simprl AAAV×V1stAB2ndACAV×V
5 eleq2 x=AAxAA
6 eleq1 x=AxV×VAV×V
7 fveq2 x=A1stx=1stA
8 7 eleq1d x=A1stxB1stAB
9 fveq2 x=A2ndx=2ndA
10 9 eleq1d x=A2ndxC2ndAC
11 8 10 anbi12d x=A1stxB2ndxC1stAB2ndAC
12 6 11 anbi12d x=AxV×V1stxB2ndxCAV×V1stAB2ndAC
13 5 12 anbi12d x=AAxxV×V1stxB2ndxCAAAV×V1stAB2ndAC
14 13 spcegv AV×VAAAV×V1stAB2ndACxAxxV×V1stxB2ndxC
15 4 14 mpcom AAAV×V1stAB2ndACxAxxV×V1stxB2ndxC
16 eluniab Ax|xV×V1stxB2ndxCxAxxV×V1stxB2ndxC
17 15 16 sylibr AAAV×V1stAB2ndACAx|xV×V1stxB2ndxC
18 xp2 B×C=xV×V|1stxB2ndxC
19 df-rab xV×V|1stxB2ndxC=x|xV×V1stxB2ndxC
20 18 19 eqtri B×C=x|xV×V1stxB2ndxC
21 20 unieqi B×C=x|xV×V1stxB2ndxC
22 17 21 eleqtrrdi AAAV×V1stAB2ndACAB×C
23 3 22 mpancom AV×V1stAB2ndACAB×C
24 1 23 sylbi AB×CAB×C