Description: Class union distributes over the intersection of two subclasses of a quotient space. Compare uniin . (Contributed by FL, 25-May-2007) (Proof shortened by Mario Carneiro, 11-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uniinqs.1 | |
|
Assertion | uniinqs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniinqs.1 | |
|
2 | uniin | |
|
3 | 2 | a1i | |
4 | eluni2 | |
|
5 | eluni2 | |
|
6 | 4 5 | anbi12i | |
7 | elin | |
|
8 | reeanv | |
|
9 | 6 7 8 | 3bitr4i | |
10 | simp3l | |
|
11 | simp2l | |
|
12 | inelcm | |
|
13 | 12 | 3ad2ant3 | |
14 | 1 | a1i | |
15 | simp1l | |
|
16 | 15 11 | sseldd | |
17 | simp1r | |
|
18 | simp2r | |
|
19 | 17 18 | sseldd | |
20 | 14 16 19 | qsdisj | |
21 | 20 | ord | |
22 | 21 | necon1ad | |
23 | 13 22 | mpd | |
24 | 23 18 | eqeltrd | |
25 | 11 24 | elind | |
26 | elunii | |
|
27 | 10 25 26 | syl2anc | |
28 | 27 | 3expia | |
29 | 28 | rexlimdvva | |
30 | 9 29 | biimtrid | |
31 | 30 | ssrdv | |
32 | 3 31 | eqssd | |