Metamath Proof Explorer


Theorem uniinqs

Description: Class union distributes over the intersection of two subclasses of a quotient space. Compare uniin . (Contributed by FL, 25-May-2007) (Proof shortened by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypothesis uniinqs.1 RErX
Assertion uniinqs BA/RCA/RBC=BC

Proof

Step Hyp Ref Expression
1 uniinqs.1 RErX
2 uniin BCBC
3 2 a1i BA/RCA/RBCBC
4 eluni2 xBbBxb
5 eluni2 xCcCxc
6 4 5 anbi12i xBxCbBxbcCxc
7 elin xBCxBxC
8 reeanv bBcCxbxcbBxbcCxc
9 6 7 8 3bitr4i xBCbBcCxbxc
10 simp3l BA/RCA/RbBcCxbxcxb
11 simp2l BA/RCA/RbBcCxbxcbB
12 inelcm xbxcbc
13 12 3ad2ant3 BA/RCA/RbBcCxbxcbc
14 1 a1i BA/RCA/RbBcCxbxcRErX
15 simp1l BA/RCA/RbBcCxbxcBA/R
16 15 11 sseldd BA/RCA/RbBcCxbxcbA/R
17 simp1r BA/RCA/RbBcCxbxcCA/R
18 simp2r BA/RCA/RbBcCxbxccC
19 17 18 sseldd BA/RCA/RbBcCxbxccA/R
20 14 16 19 qsdisj BA/RCA/RbBcCxbxcb=cbc=
21 20 ord BA/RCA/RbBcCxbxc¬b=cbc=
22 21 necon1ad BA/RCA/RbBcCxbxcbcb=c
23 13 22 mpd BA/RCA/RbBcCxbxcb=c
24 23 18 eqeltrd BA/RCA/RbBcCxbxcbC
25 11 24 elind BA/RCA/RbBcCxbxcbBC
26 elunii xbbBCxBC
27 10 25 26 syl2anc BA/RCA/RbBcCxbxcxBC
28 27 3expia BA/RCA/RbBcCxbxcxBC
29 28 rexlimdvva BA/RCA/RbBcCxbxcxBC
30 9 29 biimtrid BA/RCA/RxBCxBC
31 30 ssrdv BA/RCA/RBCBC
32 3 31 eqssd BA/RCA/RBC=BC