Metamath Proof Explorer


Theorem unirnffid

Description: The union of the range of a function from a finite set into the class of finite sets is finite. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses unirnffid.1 φF:TFin
unirnffid.2 φTFin
Assertion unirnffid φranFFin

Proof

Step Hyp Ref Expression
1 unirnffid.1 φF:TFin
2 unirnffid.2 φTFin
3 1 ffnd φFFnT
4 fnfi FFnTTFinFFin
5 3 2 4 syl2anc φFFin
6 rnfi FFinranFFin
7 5 6 syl φranFFin
8 1 frnd φranFFin
9 unifi ranFFinranFFinranFFin
10 7 8 9 syl2anc φranFFin