Metamath Proof Explorer


Theorem upgrres

Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a pseudograph (see uhgrspan1 ) is a pseudograph. (Contributed by AV, 8-Nov-2020) (Revised by AV, 19-Dec-2021)

Ref Expression
Hypotheses upgrres.v V=VtxG
upgrres.e E=iEdgG
upgrres.f F=idomE|NEi
upgrres.s S=VNEF
Assertion upgrres GUPGraphNVSUPGraph

Proof

Step Hyp Ref Expression
1 upgrres.v V=VtxG
2 upgrres.e E=iEdgG
3 upgrres.f F=idomE|NEi
4 upgrres.s S=VNEF
5 upgruhgr GUPGraphGUHGraph
6 2 uhgrfun GUHGraphFunE
7 funres FunEFunEF
8 5 6 7 3syl GUPGraphFunEF
9 8 funfnd GUPGraphEFFndomEF
10 9 adantr GUPGraphNVEFFndomEF
11 1 2 3 upgrreslem GUPGraphNVranEFp𝒫VN|p2
12 df-f EF:domEFp𝒫VN|p2EFFndomEFranEFp𝒫VN|p2
13 10 11 12 sylanbrc GUPGraphNVEF:domEFp𝒫VN|p2
14 opex VNEFV
15 4 14 eqeltri SV
16 1 2 3 4 uhgrspan1lem2 VtxS=VN
17 16 eqcomi VN=VtxS
18 1 2 3 4 uhgrspan1lem3 iEdgS=EF
19 18 eqcomi EF=iEdgS
20 17 19 isupgr SVSUPGraphEF:domEFp𝒫VN|p2
21 15 20 mp1i GUPGraphNVSUPGraphEF:domEFp𝒫VN|p2
22 13 21 mpbird GUPGraphNVSUPGraph