Metamath Proof Explorer


Theorem upwordnul

Description: Empty set is an increasing sequence for every range. (Contributed by Ender Ting, 19-Nov-2024)

Ref Expression
Assertion upwordnul Could not format assertion : No typesetting found for |- (/) e. UpWord S with typecode |-

Proof

Step Hyp Ref Expression
1 0ex V
2 elab6g V w | w Word S k 0 ..^ w 1 w k < w k + 1 w w = w Word S k 0 ..^ w 1 w k < w k + 1
3 1 2 ax-mp w | w Word S k 0 ..^ w 1 w k < w k + 1 w w = w Word S k 0 ..^ w 1 w k < w k + 1
4 wrd0 Word S
5 eleq1a Word S w = w Word S
6 4 5 ax-mp w = w Word S
7 fveq2 w = w =
8 hash0 = 0
9 7 8 eqtrdi w = w = 0
10 9 oveq1d w = w 1 = 0 1
11 0red w = 0
12 11 lem1d w = 0 1 0
13 10 12 eqbrtrd w = w 1 0
14 0z 0
15 9 14 eqeltrdi w = w
16 1zzd w = 1
17 15 16 zsubcld w = w 1
18 fzon 0 w 1 w 1 0 0 ..^ w 1 =
19 14 17 18 sylancr w = w 1 0 0 ..^ w 1 =
20 13 19 mpbid w = 0 ..^ w 1 =
21 rzal 0 ..^ w 1 = k 0 ..^ w 1 w k < w k + 1
22 20 21 syl w = k 0 ..^ w 1 w k < w k + 1
23 6 22 jca w = w Word S k 0 ..^ w 1 w k < w k + 1
24 3 23 mpgbir w | w Word S k 0 ..^ w 1 w k < w k + 1
25 df-upword Could not format UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } : No typesetting found for |- UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } with typecode |-
26 24 25 eleqtrri Could not format (/) e. UpWord S : No typesetting found for |- (/) e. UpWord S with typecode |-