Metamath Proof Explorer


Theorem upwordnul

Description: Empty set is an increasing sequence for every range. (Contributed by Ender Ting, 19-Nov-2024)

Ref Expression
Assertion upwordnul Could not format assertion : No typesetting found for |- (/) e. UpWord S with typecode |-

Proof

Step Hyp Ref Expression
1 0ex V
2 elab6g Vw|wWordSk0..^w1wk<wk+1ww=wWordSk0..^w1wk<wk+1
3 1 2 ax-mp w|wWordSk0..^w1wk<wk+1ww=wWordSk0..^w1wk<wk+1
4 wrd0 WordS
5 eleq1a WordSw=wWordS
6 4 5 ax-mp w=wWordS
7 fveq2 w=w=
8 hash0 =0
9 7 8 eqtrdi w=w=0
10 9 oveq1d w=w1=01
11 0red w=0
12 11 lem1d w=010
13 10 12 eqbrtrd w=w10
14 0z 0
15 9 14 eqeltrdi w=w
16 1zzd w=1
17 15 16 zsubcld w=w1
18 fzon 0w1w100..^w1=
19 14 17 18 sylancr w=w100..^w1=
20 13 19 mpbid w=0..^w1=
21 rzal 0..^w1=k0..^w1wk<wk+1
22 20 21 syl w=k0..^w1wk<wk+1
23 6 22 jca w=wWordSk0..^w1wk<wk+1
24 3 23 mpgbir w|wWordSk0..^w1wk<wk+1
25 df-upword Could not format UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } : No typesetting found for |- UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } with typecode |-
26 24 25 eleqtrri Could not format (/) e. UpWord S : No typesetting found for |- (/) e. UpWord S with typecode |-