Description: Empty set is an increasing sequence for every range. (Contributed by Ender Ting, 19-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | upwordnul | Could not format assertion : No typesetting found for |- (/) e. UpWord S with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex | |
|
2 | elab6g | |
|
3 | 1 2 | ax-mp | |
4 | wrd0 | |
|
5 | eleq1a | |
|
6 | 4 5 | ax-mp | |
7 | fveq2 | |
|
8 | hash0 | |
|
9 | 7 8 | eqtrdi | |
10 | 9 | oveq1d | |
11 | 0red | |
|
12 | 11 | lem1d | |
13 | 10 12 | eqbrtrd | |
14 | 0z | |
|
15 | 9 14 | eqeltrdi | |
16 | 1zzd | |
|
17 | 15 16 | zsubcld | |
18 | fzon | |
|
19 | 14 17 18 | sylancr | |
20 | 13 19 | mpbid | |
21 | rzal | |
|
22 | 20 21 | syl | |
23 | 6 22 | jca | |
24 | 3 23 | mpgbir | |
25 | df-upword | Could not format UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } : No typesetting found for |- UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } with typecode |- | |
26 | 24 25 | eleqtrri | Could not format (/) e. UpWord S : No typesetting found for |- (/) e. UpWord S with typecode |- |