Metamath Proof Explorer


Theorem uspgr2wlkeqi

Description: Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 6-May-2021)

Ref Expression
Assertion uspgr2wlkeqi GUSHGraphAWalksGBWalksG2ndA=2ndBA=B

Proof

Step Hyp Ref Expression
1 wlkcpr AWalksG1stAWalksG2ndA
2 wlkcpr BWalksG1stBWalksG2ndB
3 wlkcl 1stAWalksG2ndA1stA0
4 fveq2 2ndA=2ndB2ndA=2ndB
5 4 oveq1d 2ndA=2ndB2ndA1=2ndB1
6 5 eqcomd 2ndA=2ndB2ndB1=2ndA1
7 6 adantl 1stAWalksG2ndA1stBWalksG2ndB2ndA=2ndB2ndB1=2ndA1
8 wlklenvm1 1stBWalksG2ndB1stB=2ndB1
9 wlklenvm1 1stAWalksG2ndA1stA=2ndA1
10 8 9 eqeqan12rd 1stAWalksG2ndA1stBWalksG2ndB1stB=1stA2ndB1=2ndA1
11 10 adantr 1stAWalksG2ndA1stBWalksG2ndB2ndA=2ndB1stB=1stA2ndB1=2ndA1
12 7 11 mpbird 1stAWalksG2ndA1stBWalksG2ndB2ndA=2ndB1stB=1stA
13 12 anim2i 1stA01stAWalksG2ndA1stBWalksG2ndB2ndA=2ndB1stA01stB=1stA
14 13 exp44 1stA01stAWalksG2ndA1stBWalksG2ndB2ndA=2ndB1stA01stB=1stA
15 3 14 mpcom 1stAWalksG2ndA1stBWalksG2ndB2ndA=2ndB1stA01stB=1stA
16 2 15 biimtrid 1stAWalksG2ndABWalksG2ndA=2ndB1stA01stB=1stA
17 1 16 sylbi AWalksGBWalksG2ndA=2ndB1stA01stB=1stA
18 17 imp31 AWalksGBWalksG2ndA=2ndB1stA01stB=1stA
19 18 3adant1 GUSHGraphAWalksGBWalksG2ndA=2ndB1stA01stB=1stA
20 simpl GUSHGraphAWalksGBWalksGGUSHGraph
21 simpl 1stA01stB=1stA1stA0
22 20 21 anim12i GUSHGraphAWalksGBWalksG1stA01stB=1stAGUSHGraph1stA0
23 simpl AWalksGBWalksGAWalksG
24 23 adantl GUSHGraphAWalksGBWalksGAWalksG
25 eqidd 1stA01stB=1stA1stA=1stA
26 24 25 anim12i GUSHGraphAWalksGBWalksG1stA01stB=1stAAWalksG1stA=1stA
27 simpr AWalksGBWalksGBWalksG
28 27 adantl GUSHGraphAWalksGBWalksGBWalksG
29 simpr 1stA01stB=1stA1stB=1stA
30 28 29 anim12i GUSHGraphAWalksGBWalksG1stA01stB=1stABWalksG1stB=1stA
31 uspgr2wlkeq2 GUSHGraph1stA0AWalksG1stA=1stABWalksG1stB=1stA2ndA=2ndBA=B
32 22 26 30 31 syl3anc GUSHGraphAWalksGBWalksG1stA01stB=1stA2ndA=2ndBA=B
33 32 ex GUSHGraphAWalksGBWalksG1stA01stB=1stA2ndA=2ndBA=B
34 33 com23 GUSHGraphAWalksGBWalksG2ndA=2ndB1stA01stB=1stAA=B
35 34 3impia GUSHGraphAWalksGBWalksG2ndA=2ndB1stA01stB=1stAA=B
36 19 35 mpd GUSHGraphAWalksGBWalksG2ndA=2ndBA=B