Metamath Proof Explorer


Theorem uvcf1

Description: In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015) (Revised by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses uvcff.u U=RunitVecI
uvcff.y Y=RfreeLModI
uvcff.b B=BaseY
Assertion uvcf1 RNzRingIWU:I1-1B

Proof

Step Hyp Ref Expression
1 uvcff.u U=RunitVecI
2 uvcff.y Y=RfreeLModI
3 uvcff.b B=BaseY
4 nzrring RNzRingRRing
5 1 2 3 uvcff RRingIWU:IB
6 4 5 sylan RNzRingIWU:IB
7 eqid 1R=1R
8 eqid 0R=0R
9 7 8 nzrnz RNzRing1R0R
10 9 ad3antrrr RNzRingIWiIjIij1R0R
11 4 ad3antrrr RNzRingIWiIjIijRRing
12 simpllr RNzRingIWiIjIijIW
13 simplrl RNzRingIWiIjIijiI
14 1 11 12 13 7 uvcvv1 RNzRingIWiIjIijUii=1R
15 simplrr RNzRingIWiIjIijjI
16 simpr RNzRingIWiIjIijij
17 16 necomd RNzRingIWiIjIijji
18 1 11 12 15 13 17 8 uvcvv0 RNzRingIWiIjIijUji=0R
19 10 14 18 3netr4d RNzRingIWiIjIijUiiUji
20 fveq1 Ui=UjUii=Uji
21 20 necon3i UiiUjiUiUj
22 19 21 syl RNzRingIWiIjIijUiUj
23 22 ex RNzRingIWiIjIijUiUj
24 23 necon4d RNzRingIWiIjIUi=Uji=j
25 24 ralrimivva RNzRingIWiIjIUi=Uji=j
26 dff13 U:I1-1BU:IBiIjIUi=Uji=j
27 6 25 26 sylanbrc RNzRingIWU:I1-1B