Metamath Proof Explorer


Theorem uzaddcl

Description: Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006)

Ref Expression
Assertion uzaddcl N M K 0 N + K M

Proof

Step Hyp Ref Expression
1 eluzelcn N M N
2 nn0cn k 0 k
3 ax-1cn 1
4 addass N k 1 N + k + 1 = N + k + 1
5 3 4 mp3an3 N k N + k + 1 = N + k + 1
6 1 2 5 syl2anr k 0 N M N + k + 1 = N + k + 1
7 6 adantr k 0 N M N + k M N + k + 1 = N + k + 1
8 peano2uz N + k M N + k + 1 M
9 8 adantl k 0 N M N + k M N + k + 1 M
10 7 9 eqeltrrd k 0 N M N + k M N + k + 1 M
11 10 exp31 k 0 N M N + k M N + k + 1 M
12 11 a2d k 0 N M N + k M N M N + k + 1 M
13 1 addid1d N M N + 0 = N
14 13 eleq1d N M N + 0 M N M
15 14 ibir N M N + 0 M
16 oveq2 j = 0 N + j = N + 0
17 16 eleq1d j = 0 N + j M N + 0 M
18 17 imbi2d j = 0 N M N + j M N M N + 0 M
19 oveq2 j = k N + j = N + k
20 19 eleq1d j = k N + j M N + k M
21 20 imbi2d j = k N M N + j M N M N + k M
22 oveq2 j = k + 1 N + j = N + k + 1
23 22 eleq1d j = k + 1 N + j M N + k + 1 M
24 23 imbi2d j = k + 1 N M N + j M N M N + k + 1 M
25 oveq2 j = K N + j = N + K
26 25 eleq1d j = K N + j M N + K M
27 26 imbi2d j = K N M N + j M N M N + K M
28 12 15 18 21 24 27 nn0indALT K 0 N M N + K M
29 28 impcom N M K 0 N + K M