Metamath Proof Explorer


Theorem vdgn1frgrv2

Description: Any vertex in a friendship graph does not have degree 1, see remark 2 in MertziosUnger p. 153 (after Proposition 1): "... no node v of it [a friendship graph] may have deg(v) = 1.". (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 4-Apr-2021)

Ref Expression
Hypothesis vdn1frgrv2.v V=VtxG
Assertion vdgn1frgrv2 GFriendGraphNV1<VVtxDegGN1

Proof

Step Hyp Ref Expression
1 vdn1frgrv2.v V=VtxG
2 frgrusgr GFriendGraphGUSGraph
3 2 anim1i GFriendGraphNVGUSGraphNV
4 3 adantr GFriendGraphNV1<VGUSGraphNV
5 eqid iEdgG=iEdgG
6 eqid domiEdgG=domiEdgG
7 eqid VtxDegG=VtxDegG
8 1 5 6 7 vtxdusgrval GUSGraphNVVtxDegGN=xdomiEdgG|NiEdgGx
9 4 8 syl GFriendGraphNV1<VVtxDegGN=xdomiEdgG|NiEdgGx
10 eqid EdgG=EdgG
11 1 10 3cyclfrgrrn2 GFriendGraph1<VaVbVcVbcabEdgGbcEdgGcaEdgG
12 11 adantlr GFriendGraphNV1<VaVbVcVbcabEdgGbcEdgGcaEdgG
13 preq1 a=Nab=Nb
14 13 eleq1d a=NabEdgGNbEdgG
15 preq2 a=Nca=cN
16 15 eleq1d a=NcaEdgGcNEdgG
17 14 16 3anbi13d a=NabEdgGbcEdgGcaEdgGNbEdgGbcEdgGcNEdgG
18 17 anbi2d a=NbcabEdgGbcEdgGcaEdgGbcNbEdgGbcEdgGcNEdgG
19 18 2rexbidv a=NbVcVbcabEdgGbcEdgGcaEdgGbVcVbcNbEdgGbcEdgGcNEdgG
20 19 rspcva NVaVbVcVbcabEdgGbcEdgGcaEdgGbVcVbcNbEdgGbcEdgGcNEdgG
21 2 adantl bcNbEdgGbcEdgGcNEdgGNVGFriendGraphGUSGraph
22 simplll bcNbEdgGbcEdgGcNEdgGNVGFriendGraphbc
23 3simpb NbEdgGbcEdgGcNEdgGNbEdgGcNEdgG
24 23 ad3antlr bcNbEdgGbcEdgGcNEdgGNVGFriendGraphNbEdgGcNEdgG
25 5 10 usgr2edg1 GUSGraphbcNbEdgGcNEdgG¬∃!xdomiEdgGNiEdgGx
26 21 22 24 25 syl21anc bcNbEdgGbcEdgGcNEdgGNVGFriendGraph¬∃!xdomiEdgGNiEdgGx
27 26 a1d bcNbEdgGbcEdgGcNEdgGNVGFriendGraph1<V¬∃!xdomiEdgGNiEdgGx
28 27 ex bcNbEdgGbcEdgGcNEdgGNVGFriendGraph1<V¬∃!xdomiEdgGNiEdgGx
29 28 ex bcNbEdgGbcEdgGcNEdgGNVGFriendGraph1<V¬∃!xdomiEdgGNiEdgGx
30 29 a1i bVcVbcNbEdgGbcEdgGcNEdgGNVGFriendGraph1<V¬∃!xdomiEdgGNiEdgGx
31 30 rexlimivv bVcVbcNbEdgGbcEdgGcNEdgGNVGFriendGraph1<V¬∃!xdomiEdgGNiEdgGx
32 20 31 syl NVaVbVcVbcabEdgGbcEdgGcaEdgGNVGFriendGraph1<V¬∃!xdomiEdgGNiEdgGx
33 32 ex NVaVbVcVbcabEdgGbcEdgGcaEdgGNVGFriendGraph1<V¬∃!xdomiEdgGNiEdgGx
34 33 pm2.43a NVaVbVcVbcabEdgGbcEdgGcaEdgGGFriendGraph1<V¬∃!xdomiEdgGNiEdgGx
35 34 com24 NV1<VGFriendGraphaVbVcVbcabEdgGbcEdgGcaEdgG¬∃!xdomiEdgGNiEdgGx
36 35 com3r GFriendGraphNV1<VaVbVcVbcabEdgGbcEdgGcaEdgG¬∃!xdomiEdgGNiEdgGx
37 36 imp31 GFriendGraphNV1<VaVbVcVbcabEdgGbcEdgGcaEdgG¬∃!xdomiEdgGNiEdgGx
38 12 37 mpd GFriendGraphNV1<V¬∃!xdomiEdgGNiEdgGx
39 fvex iEdgGV
40 39 dmex domiEdgGV
41 40 a1i GFriendGraphNV1<VdomiEdgGV
42 rabexg domiEdgGVxdomiEdgG|NiEdgGxV
43 hash1snb xdomiEdgG|NiEdgGxVxdomiEdgG|NiEdgGx=1ixdomiEdgG|NiEdgGx=i
44 41 42 43 3syl GFriendGraphNV1<VxdomiEdgG|NiEdgGx=1ixdomiEdgG|NiEdgGx=i
45 reusn ∃!xdomiEdgGNiEdgGxixdomiEdgG|NiEdgGx=i
46 44 45 bitr4di GFriendGraphNV1<VxdomiEdgG|NiEdgGx=1∃!xdomiEdgGNiEdgGx
47 46 necon3abid GFriendGraphNV1<VxdomiEdgG|NiEdgGx1¬∃!xdomiEdgGNiEdgGx
48 38 47 mpbird GFriendGraphNV1<VxdomiEdgG|NiEdgGx1
49 9 48 eqnetrd GFriendGraphNV1<VVtxDegGN1
50 49 ex GFriendGraphNV1<VVtxDegGN1