| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1red |  | 
						
							| 2 |  | prmuz2 |  | 
						
							| 3 | 2 | adantr |  | 
						
							| 4 |  | eluz2b2 |  | 
						
							| 5 | 3 4 | sylib |  | 
						
							| 6 | 5 | simpld |  | 
						
							| 7 | 6 | nnred |  | 
						
							| 8 |  | nnnn0 |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 | 7 9 | reexpcld |  | 
						
							| 11 | 5 | simprd |  | 
						
							| 12 | 6 | nncnd |  | 
						
							| 13 | 12 | exp1d |  | 
						
							| 14 | 6 | nnge1d |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 |  | nnuz |  | 
						
							| 17 | 15 16 | eleqtrdi |  | 
						
							| 18 | 7 14 17 | leexp2ad |  | 
						
							| 19 | 13 18 | eqbrtrrd |  | 
						
							| 20 | 1 7 10 11 19 | ltletrd |  | 
						
							| 21 | 1 20 | ltned |  | 
						
							| 22 | 21 | neneqd |  | 
						
							| 23 | 22 | nrexdv |  | 
						
							| 24 | 23 | nrex |  | 
						
							| 25 |  | 1nn |  | 
						
							| 26 |  | isppw2 |  | 
						
							| 27 | 25 26 | ax-mp |  | 
						
							| 28 | 27 | necon1bbii |  | 
						
							| 29 | 24 28 | mpbi |  |