Metamath Proof Explorer


Theorem wksfval

Description: The set of walks (in an undirected graph). (Contributed by AV, 30-Dec-2020)

Ref Expression
Hypotheses wksfval.v V=VtxG
wksfval.i I=iEdgG
Assertion wksfval GWWalksG=fp|fWorddomIp:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1Ifk

Proof

Step Hyp Ref Expression
1 wksfval.v V=VtxG
2 wksfval.i I=iEdgG
3 df-wlks Walks=gVfp|fWorddomiEdggp:0fVtxgk0..^fif-pk=pk+1iEdggfk=pkpkpk+1iEdggfk
4 fveq2 g=GiEdgg=iEdgG
5 4 2 eqtr4di g=GiEdgg=I
6 5 dmeqd g=GdomiEdgg=domI
7 wrdeq domiEdgg=domIWorddomiEdgg=WorddomI
8 6 7 syl g=GWorddomiEdgg=WorddomI
9 8 eleq2d g=GfWorddomiEdggfWorddomI
10 fveq2 g=GVtxg=VtxG
11 10 1 eqtr4di g=GVtxg=V
12 11 feq3d g=Gp:0fVtxgp:0fV
13 5 fveq1d g=GiEdggfk=Ifk
14 13 eqeq1d g=GiEdggfk=pkIfk=pk
15 13 sseq2d g=Gpkpk+1iEdggfkpkpk+1Ifk
16 14 15 ifpbi23d g=Gif-pk=pk+1iEdggfk=pkpkpk+1iEdggfkif-pk=pk+1Ifk=pkpkpk+1Ifk
17 16 ralbidv g=Gk0..^fif-pk=pk+1iEdggfk=pkpkpk+1iEdggfkk0..^fif-pk=pk+1Ifk=pkpkpk+1Ifk
18 9 12 17 3anbi123d g=GfWorddomiEdggp:0fVtxgk0..^fif-pk=pk+1iEdggfk=pkpkpk+1iEdggfkfWorddomIp:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1Ifk
19 18 opabbidv g=Gfp|fWorddomiEdggp:0fVtxgk0..^fif-pk=pk+1iEdggfk=pkpkpk+1iEdggfk=fp|fWorddomIp:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1Ifk
20 elex GWGV
21 3anass fWorddomIp:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1IfkfWorddomIp:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1Ifk
22 21 opabbii fp|fWorddomIp:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1Ifk=fp|fWorddomIp:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1Ifk
23 2 fvexi IV
24 23 dmex domIV
25 wrdexg domIVWorddomIV
26 24 25 mp1i GWWorddomIV
27 ovex 0fV
28 1 fvexi VV
29 28 a1i GWfWorddomIVV
30 mapex 0fVVVp|p:0fVV
31 27 29 30 sylancr GWfWorddomIp|p:0fVV
32 simpl p:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1Ifkp:0fV
33 32 ss2abi p|p:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1Ifkp|p:0fV
34 33 a1i GWfWorddomIp|p:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1Ifkp|p:0fV
35 31 34 ssexd GWfWorddomIp|p:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1IfkV
36 26 35 opabex3d GWfp|fWorddomIp:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1IfkV
37 22 36 eqeltrid GWfp|fWorddomIp:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1IfkV
38 3 19 20 37 fvmptd3 GWWalksG=fp|fWorddomIp:0fVk0..^fif-pk=pk+1Ifk=pkpkpk+1Ifk